(本小題滿分10分)
如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,,PD=1,BD=8,求線段BC的長(zhǎng).

BC=.

解析試題分析:由切割線定理得 PA=3,
根據(jù)弦切角定理 得,
又因?yàn)?PA=PE,所以PA=PE=AE=3,ED=2,BE=6,
由相交弦定理得 EC=4,在△BEC中,根據(jù)余弦定理的BC=.
考點(diǎn): 本題主要考查圓的幾何性質(zhì),弦切角定理,余弦定理的應(yīng)用。
點(diǎn)評(píng):中檔題,作為選考內(nèi)容,題目的難度往往不大,突出對(duì)基礎(chǔ)知識(shí)的考查。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,是圓的直徑,在圓上,、的延長(zhǎng)線交直線于點(diǎn)、, 求證:
(Ⅰ)直線是圓的切線;
(Ⅱ) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,AB是⊙O的直徑 ,AC是弦 ,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E.OE交AD于點(diǎn)F.

(Ⅰ)求證:DE是⊙O的切線;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

切線與圓切于點(diǎn),圓內(nèi)有一點(diǎn)滿足,的平分線交圓于,,延長(zhǎng)交圓于,延長(zhǎng)交圓于,連接

(Ⅰ)證明://;
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

[選修4 - 1:幾何證明選講](本小題滿分10分)
如圖,在梯形中,∥BC,點(diǎn),分別在邊上,設(shè)相交于點(diǎn),若,,四點(diǎn)共圓,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在邊長(zhǎng)為1的等邊△ABC中,DE分別為邊AB、AC上的點(diǎn),若A關(guān)于直線DE的對(duì)稱點(diǎn)A1恰好在線段BC上,

(1)①設(shè)A1Bx,用x表示AD;②設(shè)∠A1ABθ∈[0º,60º],用θ表示AD
(2)求AD長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
如圖,已知與圓相切于點(diǎn),經(jīng)過點(diǎn)的割線交圓于點(diǎn),的平分線分別交于點(diǎn)

(Ⅰ)證明:=;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本大題10分)
如圖,為⊙的直徑,切⊙于點(diǎn),交⊙于點(diǎn),點(diǎn)上.求證:是⊙的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
如圖,在⊙O中,弦CD垂直于直徑AB,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案