已知集合A={a2,a+1,-3},B={a-3,a2+1,2a-1},若A∩B={-3},
(Ⅰ)求實數(shù)a的值.
(Ⅱ)設(shè)f(x)=
x2-4x+6,x≥0
x+6,x<0
,求不等式f(x)>f(-a)的解集.
分析:(Ⅰ)依題意,-3∈B,對a-3=-3與2a-1=-3分別討論分析,即可求得實數(shù)a的值;
(Ⅱ)由(Ⅰ)知a=-1,當(dāng)x≥0時,解不等式x2-4x+6>3可得解集的一部分;當(dāng)x<0時,解不等式x+6>3可得解集的另一部分;最后取其并集即可.
解答:解:(Ⅰ)∵A∩B={-3},∴-3∈B,
∴當(dāng)a-3=-3,即a=0時,A∩B={-3,1},與題設(shè)條件A∩B={-3}矛盾,舍去;
當(dāng)2a-1=-3,即a=-1時,A={1,0,-3},B={-4,2,-3},
滿足A∩B={-3},綜上可知a=-1.…(6分)
(Ⅱ)∵f(a)=f(1)=3,
∴當(dāng)x≥0時,由f(x)>f(1)得x2-4x+6>3,
∴x>3或x<1.又x≥0,
∴x∈[0,1)∪(3,+∞).
當(dāng)x<0時,由f(x)>f(a)=3得x+6>3,
∴x>-3,
∴x∈(-3,0).
∴所求不等式的解集為:(-3,1)∪(3,+∞) …(12分)
點評:本題考查一元二次不等式的解法,求參數(shù)a的值是關(guān)鍵,考查分類討論思想與方程思想,考查集合的運算,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a2,a+1,3},B={a-3,2a-1,a2+1}.當(dāng)A∩B={3},則實數(shù)a=
6,或±
2
6,或±
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知集合A={x|x2-1=0},集合B={x|mx-1=0},若A∪B=A,求實數(shù)m組成的集合;
(2)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案