在正三棱錐P-ABC中,底面正△ABC的中心為O,D是PA的中點(diǎn),PO=AB=2,求PB與平面BDC所成角的正弦值.

【答案】分析:由題意,由于圖形中已經(jīng)出現(xiàn)了垂直于底面的高線,所以可以利用空間向量的方法求解直線與平面所成的夾角.
解答:解:以O(shè)為坐標(biāo)原點(diǎn),OA為x軸,OP為z軸建立空間直角坐標(biāo)系.因△ABC是正三角形,故y軸平行于BC,而PO=AB=2,則
P(0,0,2),A(,0,0),
B(-,1,0),C(-,-1,0),
D是PA的中點(diǎn),故D(,0,1)
=(0,-2,0),=(,-1,1)(2分)
設(shè)=(x,y,z)是平面BDC的一個(gè)法向量,=0且=0,
即:,化簡(jiǎn)得:(5分)
取x=,則y=0,z=-2,
平面BDC的一個(gè)法向量是=(,0,-2),=(-,1,-2)
cos<>==(9分)
由于所成的角與PB與平面BDC所成角互余,所以PB與平面BDC所成角的正弦值為.(10分)
點(diǎn)評(píng):本題主要考查了直線與平面之間所成角,考查空間想象能力,本題考點(diǎn)是立體幾何中求線面角,這是立體幾何中常考的一個(gè)題型,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、在正三棱錐P-ABC中,D、E分別是AB、BC的中點(diǎn),有下列四個(gè)論斷:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE;④平面PDE⊥平面ABC.其中正確的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正三棱錐P-ABC中,D,E分別是AB,BC的中點(diǎn),有下列三個(gè)論斷:
①AC⊥PB;
②AC∥平面PDE;
③AB⊥平面PDE.
其中正確論斷的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正三棱錐P-ABC中,三條側(cè)棱兩兩垂直,且側(cè)棱長(zhǎng)為a,則點(diǎn)P到平面ABC的距離為
3
3
a
3
3
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正三棱錐P-ABC中,AB=
2
,PA=
3
+1
,過點(diǎn)A作截面交PB,PC分別于D,E,則截面△ADE的周長(zhǎng)的最小值是
6
+
2
6
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正三棱錐P-ABC中,M、N分別是側(cè)棱PB、PC的中點(diǎn),若截面AMN⊥側(cè)面PBC,底面邊長(zhǎng)為2,則此三棱錐的體積是(  )
A、
3
2
B、
5
3
C、
5
D、
15
3

查看答案和解析>>

同步練習(xí)冊(cè)答案