【題目】已知實(shí)數(shù)λ>0,設(shè)函數(shù)f(x)=eλx﹣x.

(Ⅰ)當(dāng)λ=1時(shí),求函數(shù)f(x)的極值;

(Ⅱ)若對(duì)任意x∈(0,+∞),不等式f(x)≥0恒成立,求λ的最小值.

【答案】(Ⅰ)極小值是1;(Ⅱ)

【解析】試題分析:Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;

Ⅱ)問(wèn)題轉(zhuǎn)化為λ,令gx=,根據(jù)函數(shù)的單調(diào)性求出gx)的最大值即λ的最小值即可.

試題解析:解:(Ⅰ)λ=1時(shí),函數(shù)f(x)=ex﹣x,f′(x)=ex﹣1,

f′(x)0,解得:x0,令f′(x)0,解得:x0,

f(x)在(﹣∞,0)遞減,在(0,+∞)遞增,

f(x)無(wú)極大值,只有極小值,且極小值是f(0)=1;

x0時(shí),fx0λ,

gx=,g′x=,

g′(x)0,解得:0xe,令g′(x)0,解得:xe,

g(x)在(0,e)遞增,在(e,+∞)遞減,

gx最大值=ge=

λ的最小值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,P,Q分別是BC和CD的中點(diǎn).
(1)若AB=2,AD=1,∠BAD=60°,求 及cos∠BAC的余弦值;
(2)若 + ,求λ+μ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為 ,左焦點(diǎn)到左頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)M(1,1)的直線與橢圓C相交于A,B兩點(diǎn),且點(diǎn)M為弦AB中點(diǎn),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種零件按質(zhì)量標(biāo)準(zhǔn)分為1,2,3,4,5五個(gè)等級(jí),現(xiàn)從一批該零件巾隨機(jī)抽取20個(gè),對(duì)其等級(jí)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下

等級(jí)

1

2

3

4

5

頻率

0.05

m

0.15

0.35

n


(1)在抽取的20個(gè)零件中,等級(jí)為5的恰有2個(gè),求m,n;
(2)在(1)的條件下,從等級(jí)為3和5的所有零件中,任意抽取2個(gè),求抽取的2個(gè)零件等級(jí)恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲正弦函數(shù)shx= 和雙曲余弦函數(shù)chx= 與我們學(xué)過(guò)的正弦函數(shù)和余弦函數(shù)有許多類似的性質(zhì),請(qǐng)類比正弦函數(shù)和余弦函數(shù)的和角公式,寫出雙曲正弦或雙曲余弦函數(shù)的一個(gè)類似的正確結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=BC=2AA1 , ∠ABC=90°,D是BC的中點(diǎn).

(1)求證:A1B∥平面ADC1
(2)求二面角C1﹣AD﹣C的余弦值;
(3)試問(wèn)線段A1B1上是否存在點(diǎn)E,使AE與DC1成60°角?若存在,確定E點(diǎn)位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x2ex1 x3﹣x2(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(1,+∞)時(shí),用數(shù)學(xué)歸納法證明:n∈N* , ex1 (其中n!=1×2×…×n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l經(jīng)過(guò)點(diǎn)P(2,﹣1),且在兩坐標(biāo)軸上的截距之和為2,圓M的圓心在直線2x+y=0上,且與直線l相切于點(diǎn)P.
(1)求直線l的方程;
(2)求圓M的方程;
(3)求圓M在y軸上截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)當(dāng)x∈[0, ]時(shí),求| + |的取值范圍;
(2)若g(x)=( + ,求當(dāng)k為何值時(shí),g(x)的最小值為﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案