若函數(shù)h(x)滿足
(1)h(0)=1,h(1)=0;
(2)對任意,有h(h(a))=a;
(3)在(0,1)上單調遞減。則稱h(x)為補函數(shù)。已知函數(shù)
(1)判函數(shù)h(x)是否為補函數(shù),并證明你的結論;
(2)若存在,使得h(m)=m,若m是函數(shù)h(x)的中介元,記時h(x)的中介元為xn,且,若對任意的,都有Sn< ,求的取值范圍;
(3)當=0,時,函數(shù)y= h(x)的圖像總在直線y=1-x的上方,求P的取值范圍。
見解析
【解析】(1)函數(shù)是補函數(shù)。證明如下:
①;
②;
③令,有,
因為,所以當時,,所以在(0,1)上單調遞減,故函數(shù)在(0,1)上單調遞減。
(2) 當,由,得:
①當時,中介元;
②當且時,由(*)可得或;
得中介元,綜上有對任意的,中介元()
于是,當時,有=
當n無限增大時, 無限接近于, 無限接近于,故對任意的,成立等價于,即 ;
(3) 當時, ,中介元是
①當時, ,中介元為,所以點不在直線y=1-x的上方,不符合條件;
②當時,依題意只須在時恒成立,也即在時恒成立,設,,則,
由可得,且當時,,當時,,又因為=1,所以當時, 恒成立。
綜上:p的取值范圍為(1,+)。
【點評】本題考查導數(shù)的應用、函數(shù)的新定義,函數(shù)與不等式的綜合應用以及分類討論,數(shù)形結合的數(shù)學思想. 高考中,導數(shù)解答題一般有以下幾種考查方向:一、導數(shù)的幾何意義,求函數(shù)的單調區(qū)間;二、用導數(shù)研究函數(shù)的極值,最值;三、用導數(shù)求最值的方法證明不等式.來年需要注意用導數(shù)研究函數(shù)最值的考查.
科目:高中數(shù)學 來源: 題型:
a |
2 |
b |
2 |
2 |
x |
x-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x+y |
1+xy |
1-x |
1+x |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
4 |
x |
x | … | -3 | -2.3 | -2.2 | -2.1 | -2 | -1.9 | -1.7 | -1.5 | -1 | -0.5 | … |
y | … | -4.3 | -4.04 | -4.02 | -4.005 | -4 | -4.005 | -4.05 | -4.17 | -5 | -8.5 | … |
4 |
x |
4 |
x |
x2-ax+4 |
x |
查看答案和解析>>
科目:高中數(shù)學 來源:2012年普通高等學校招生全國統(tǒng)一考試江西卷數(shù)學理科 題型:044
若函數(shù)h(x)滿足
(1)h(0)=1,h(1)=0;
(2)對任意a∈[0,1],有h(h(a))=a;
(3)在(0,1)上單調遞減.
則稱h(x)為補函數(shù).已知函數(shù)h(x)=(λ>-1,p>0)
(1)判函數(shù)h(x)是否為補函數(shù),并證明你的結論;
(2)若存在m∈[0,1],使得h(m)=m,若m是函數(shù)h(x)的中介元,記p=(n∈N+)時h(x)的中介元為xn,且Sn=,若對任意的n∈N+,都有Sn<,求λ的取值范圍;
(3)當λ=0,x∈(0,1)時,函數(shù)y=h(x)的圖像總在直線y=1-x的上方,求P的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com