已知函數(shù)f(x)=x2-ax-aln(x-1)(a∈R)
(1)當(dāng)a=1時,求函數(shù)f(x)的最值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

解:(1)函數(shù)f(x)=x2-ax-aln(x-1)(a∈R)的定義域是(1,+∞)
當(dāng)a=1時,f(x)=x2-x-ln(x-1),
,
當(dāng)x∈時,f(x)<0,
所以f (x)在為減函數(shù).
當(dāng)x∈時,f(x)>0,
所以f (x)在為增函數(shù),
則當(dāng)x=時,f(x)有極小值,也就是最小值.
所以函數(shù)f (x)的最小值為=
(2)
若a≤0時,則,f(x)=>0在(1,+∞)恒成立,
所以f(x)的增區(qū)間為(1,+∞).
若a>0,則,故當(dāng),f′(x)=≤0,
當(dāng)時,f(x)=≥0,
所以a>0時f(x)的減區(qū)間為,f(x)的增區(qū)間為
分析:(1)首先求出函數(shù)的定義域,把a(bǔ)=1代入函數(shù)解析式后,求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)等于0求出函數(shù)的極值點,結(jié)合定義域可得函數(shù)在定義域內(nèi)取得最值的情況,從而求出函數(shù)的最值.
(2)把原函數(shù)求導(dǎo)后,對參數(shù)a進(jìn)行分類,根據(jù)a的不同取值得到導(dǎo)函數(shù)在不同區(qū)間內(nèi)的符號,從而得到原函數(shù)的單調(diào)區(qū)間.
點評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的最值,求函數(shù)在閉區(qū)間[a,b]上的最大值與最小值是通過比較函數(shù)在(a,b)內(nèi)所有極值與端點函數(shù)f(a),f(b) 比較而得到的.考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的導(dǎo)函數(shù)在(a,b)內(nèi)恒大于等于0,原函數(shù)在該區(qū)間內(nèi)單調(diào)遞增,函數(shù)的導(dǎo)函數(shù)在(a,b)內(nèi)恒小于等于0,原函數(shù)在該區(qū)間內(nèi)單調(diào)遞減,此題是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案