已知函數(shù),

(1)若函數(shù)的兩個極值點為,求函數(shù)的解析式;

(2)在(1)的條件下,求函數(shù)的圖象過點的切線方程;

(3)對一切恒成立,求實數(shù)的取值范圍。

 

【答案】

(1)  (2)x+y-2=0   (3)  a≥-2

【解析】函數(shù)的兩個極值點處導數(shù)為0 ,g’(x)=3x2+2ax-1帶入即可;

要求函數(shù)的圖象過點的切線方程,先求函數(shù)在點處的導數(shù)即斜率,在用點斜式求出方程;恒成立求實數(shù)的取值范圍時,一般分離參數(shù),2a≥2lnx-3x-再在最值處成立即可。

解:(1)g’(x)=3x2+2ax-1由題意:

(2)由(1)可得:g(x)=x3-x2-x+2(1o)若P為切點,則切線方程為:y=1

2 o若P不是切點,設切點Q(x0,y0)∴切線方程為y-y0=(3x02-2x0-1)(x-x0)

1-(x03-x02-x0+2)=(3x02-2x0-1)(1-x0)    2x0(x0-1)2=0    ∴x0=0   ∴切點(0,2)

∴切線方程:x+y-2=0

(3)2xlnx≤3x2+2ax-1+2    ∴2ax≥2xlnx-3x2-1     ∵x>0   ∴2a≥2lnx-3x-

令ln(x)=2lnx-3x-   

x       (0,1)    1       (1,+∞)

h’(x)      +       0       -

h(x)        ↑      極大值      ↓

∴h(x) ≤h(1)=-4    ∴2a≥-4    a≥-2

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
-1
,則f(x)的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•自貢一模)已知函數(shù)f(x)=  
x+1
,  x
≤0,
log2x
,x>0
,
則函數(shù)y=f[f(x)]+1的零點個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(2x+1)的定義域為[1,2],則函數(shù)f(4x+1)的定義域為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•永州一模)已知函數(shù)f(x)=ln(1+x)-p
x

(1)若函數(shù)f(x)在定義域內(nèi)為減函數(shù),求實數(shù)p的取值范圍;
(2)如果數(shù)列{an}滿足a1=3,an+1=[1+
1
n2(n+1)2
]an+
1
4n
,試證明:當n≥2時,4≤an<4e
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•浦東新區(qū)一模)已知函數(shù)f(x)=
x2+1
-ax
,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)當a≥1時,判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案