(2013•日照一模)給出下列四個(gè)命題:
①若x>0,且x≠1則lgx+
1
lgx
≥2
;
②設(shè)x,y∈R,命題“若xy=0,則x2+y2=0”的否命題是真命題;
③若函數(shù)y=f(x)的圖象在點(diǎn)M(1,f(1))處的切線方程是y=
1
2
x+2
,則f(1)+f'(1)=3;
④已知拋物線y2=4px(p>0)的焦點(diǎn)F與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)重合,點(diǎn)A是兩曲線的交點(diǎn),AF⊥x軸,則雙曲線的離心率為
2
+1

其中所有真命題的序號(hào)是
②③④
②③④
分析:①利用基本不等式成立的條件判斷.②利用逆否命題的等價(jià)性去判斷否命題.③利用導(dǎo)數(shù)的幾何意義以及導(dǎo)數(shù)的運(yùn)算判斷.④利用拋物線和雙曲線的性質(zhì)去判斷.
解答:解:①當(dāng)0<x<1時(shí),lgx<0,不滿足基本不等式的條件,所以①錯(cuò)誤.
②因?yàn)槟婷}和否命題互為等價(jià)命題,所以原命題的逆命題為“若x2+y2=0,則xy=0”,則逆命題正確,
所以否命題也正確,所以②正確.
③由y=f(x)的圖象在點(diǎn)M(1,f(1))處的切線方程是y=
1
2
x+2
,所以得到f(1)=
1
2
+2=
5
2
f′(1)=
1
2
,
所以f(1)+f'(1)=3,所以③正確.
④設(shè)雙曲線的左焦點(diǎn)為F',連接AF'
∵F是拋物線y2=4px的焦點(diǎn),且AF⊥x軸,
∴設(shè)A(p,y0),得y02=4p×p,得y0=2p,A(p,2p),
因此,Rt△AFF'中,|AF|=|FF'|=2p,得|AF'|=2
2
p
∴雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦距2c=|FF'|=2p,實(shí)軸2a=|AF'|-|AF|=2p(
2
-1

由此可得離心率為e=
c
a
=
2c
2a
=
2p
2p(
2
-1)
=
2
+1
,所以④正確.
故答案為:②③④.
點(diǎn)評(píng):本題主要考查命題的真假判斷,綜合性較強(qiáng)涉及的知識(shí)點(diǎn)較多,要求熟練掌握相應(yīng)的知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)拋物線y2=16x的準(zhǔn)線為
x=-4
x=-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)若sinα=
3
5
,且α是第二象限角,則tanα=
-
3
4
-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)記Sk=1k+2k+3k+…+nk,當(dāng)k=1,2,3,…時(shí),觀察下列等式:
S1=
1
2
n2+
1
2
n,
S2=
1
3
n3+
1
2
n2+
1
6
n,
S3=
1
4
n4+
1
2
n3+
1
4
n2
,
S4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n,
S5=An6+
1
2
n5+
5
12
n4+Bn2
,

可以推測(cè),A-B=
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)某學(xué)校為促進(jìn)學(xué)生的全面發(fā)展,積極開展豐富多樣的社團(tuán)活動(dòng),根據(jù)調(diào)查,學(xué)校在傳統(tǒng)民族文化的繼承方面開設(shè)了“泥塑”、“剪紙”、“年畫”三個(gè)社團(tuán),三個(gè)社團(tuán)參加的人數(shù)如下表示所示:
社團(tuán) 泥塑 剪紙 年畫
人數(shù) 320 240 200
為調(diào)查社團(tuán)開展情況,學(xué)校社團(tuán)管理部采用分層抽樣的方法從中抽取一個(gè)容量為n的樣本,已知從“剪紙”社團(tuán)抽取的同學(xué)比從“泥塑”社團(tuán)抽取的同學(xué)少2人.
(I)求三個(gè)社團(tuán)分別抽取了多少同學(xué);
(Ⅱ)若從“剪紙”社團(tuán)抽取的同學(xué)中選出2人擔(dān)任該社團(tuán)活動(dòng)監(jiān)督的職務(wù),已知“剪紙”社團(tuán)被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選為監(jiān)督職務(wù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)已知命題p:“1,b,9成等比數(shù)列”,命題q:“b=3”,那么p成立是q成立的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案