已知矩陣A=,向量
(1)求矩陣A的特征值λ1、λ2和特征向量;
(2)求的值.
【答案】分析:(1)先根據(jù)特征值的定義列出特征多項(xiàng)式,令f(λ)=0解方程可得特征值,再由特征值列出方程組即可解得相應(yīng)的特征向量.
(2)利用特征向量的性質(zhì)計(jì)算,先利用特征向量表示向量,后將求的值的問題轉(zhuǎn)化成求有關(guān)特征向量的計(jì)算問題.
解答:解:(1)矩陣A的特征多項(xiàng)式為2-5λ+6,
令f(λ)=0,得λ1=2,λ2=3,
當(dāng)λ1=2時(shí),得,當(dāng)λ2=3時(shí),得.(7分)
(2)由,得m=3,n=1.
==.(15分)
點(diǎn)評:本題主要考查了特征值與特征向量的計(jì)算以及利用特征向量求向量乘方的問題,屬于向量中的基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市清江附中高三(上)第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知矩陣A=,向量=[].求向量,使得A2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)州市江都市丁溝中學(xué)高三(上)自主學(xué)習(xí)診斷數(shù)學(xué)試卷(解析版) 題型:解答題

已知矩陣A=,向量=[].求向量,使得A2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市誠賢中學(xué)高三(上)第二次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
A選修4-1:幾何證明選講
如圖,延長⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點(diǎn),過點(diǎn)B作DE的垂線,垂足為點(diǎn)C.
求證:∠ACB=∠OAC.
B選修4-2:矩陣與變換
已知矩陣A=,向量.求向量,使得A2=
C選修4-3:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=,焦距為2,求實(shí)數(shù)a的值.
D選修4-4:不等式選講
已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+(a,b.c為實(shí)數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市清江附中高三(上)第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知矩陣A=,向量=[].求向量,使得A2=

查看答案和解析>>

同步練習(xí)冊答案