已知一個(gè)口袋中裝有n個(gè)紅球(n≥1且n∈N+)和2個(gè)白球,從中有放回連續(xù)摸三次,每次摸出2個(gè)球,若兩個(gè)球顏色不同,則為中獎(jiǎng).
(1)當(dāng)n=3時(shí),設(shè)中獎(jiǎng)次數(shù)為ζ,求ζ的分布列及期望;
(2)記三次摸球中,恰好兩次中獎(jiǎng)概率為P,當(dāng)n為多少時(shí),P有最大值.
【答案】分析:(1)當(dāng)n=3時(shí),每次摸出兩個(gè)球,中獎(jiǎng)的概率p==,設(shè)中獎(jiǎng)次數(shù)為ζ,則ζ的可能取值為0,1,2,3.分別求出P(ζ=0),P(ζ=1),P(ζ=2),P(ζ=3),由此能求出ζ的分布列和Eζ.
(2)設(shè)每次摸獎(jiǎng)中獎(jiǎng)的概率為p,則三次摸球(每次摸球后放回)恰有兩次中獎(jiǎng)的概率為P(ζ=2)=•p2•(1-p)=-3p3+3p2,0<p<1,由此利用導(dǎo)數(shù)性質(zhì)能求出n為1或2時(shí),P有最大值.
解答:解:(1)當(dāng)n=3時(shí),每次摸出兩個(gè)球,中獎(jiǎng)的概率p==,
設(shè)中獎(jiǎng)次數(shù)為ζ,則ζ的可能取值為0,1,2,3.
P(ζ=0)==
P(ζ=1)==,
P(ζ=2)==
P(ζ=3)==
∴ζ的分布列為:
 ζ 0 1 2 3
 P    
Eζ=0×+1×+2×+3×=
(2)設(shè)每次摸獎(jiǎng)中獎(jiǎng)的概率為p,則三次摸球(每次摸球后放回)恰有兩次中獎(jiǎng)的概率為:
P(ζ=2)=•p2•(1-p)=-3p3+3p2,0<p<1,
p′=-9p2+6p=-3p(3p-2),
當(dāng)p∈(0,)時(shí),p′>0;當(dāng)p∈(,1)時(shí),p′<0.
∴在(0,)上,p為增函數(shù);在(,1)上,p為減函數(shù).
∴當(dāng)p=時(shí),p取得最大值,
∵p=,即n2-3n-2=0,解得n=1或n=2.
故n為1或2時(shí),P有最大值.
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和數(shù)學(xué)斯望的求法,解題時(shí)要認(rèn)真審題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)的性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、已知從裝有n+1個(gè)球(其中n個(gè)白球,1個(gè)黑球)的口袋中取出m個(gè)球(0<m<n,n,m∈N),共有Cn+1m種取法.在這Cn+1m種取法中,可以分成兩類(lèi):一類(lèi)是取出的m個(gè)球全部為白球,另一類(lèi)是取出一個(gè)黑球和(m-1)個(gè)白球,共有C10Cnm+C11Cnm-1種取法,即有等式Cnm+Cnm-1=Cn+1m成立.試根據(jù)上述思想,化簡(jiǎn)下列式子:Cnm+Ck1Cnm-1+Ck2Cnm-2+…+CkkCnm-k=
Cn+km
.(1≤k<m≤n,k,m,n∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)口袋中裝有n個(gè)紅球(n≥1且n∈N+)和2個(gè)白球,從中有放回連續(xù)摸三次,每次摸出2個(gè)球,若兩個(gè)球顏色不同,則為中獎(jiǎng).
(1)當(dāng)n=3時(shí),設(shè)中獎(jiǎng)次數(shù)為ζ,求ζ的分布列及期望;
(2)記三次摸球中,恰好兩次中獎(jiǎng)概率為P,當(dāng)n為多少時(shí),P有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省瑞安中學(xué)2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:044

已知一個(gè)口袋中裝有n個(gè)紅球(n≥1且n∈N)和2個(gè)白球,從中有放回地連續(xù)摸三次,每次摸出兩個(gè)球,若兩個(gè)球顏色不同則為中獎(jiǎng),否則不中獎(jiǎng).

(1)當(dāng)n=3時(shí),設(shè)三次摸球中(每次摸球后放回)中獎(jiǎng)的次數(shù)為ξ,求的ξ分布列;

(2)記三次摸球中(每次摸球后放回)恰有兩次中獎(jiǎng)的概率為P,當(dāng)n取多少時(shí),P最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知從裝有n+1個(gè)球(其中n個(gè)白球,1個(gè)黑球)的口袋中取出m個(gè)球(0<m<n,n,m∈N),共有Cn+1m種取法.在這Cn+1m種取法中,可以分成兩類(lèi):一類(lèi)是取出的m個(gè)球全部為白球,另一類(lèi)是取出一個(gè)黑球和(m-1)個(gè)白球,共有C1Cnm+C11Cnm-1種取法,即有等式Cnm+Cnm-1=Cn+1m成立.試根據(jù)上述思想,化簡(jiǎn)下列式子:Cnm+Ck1Cnm-1+Ck2Cnm-2+…+CkkCnm-k=    .(1≤k<m≤n,k,m,n∈N)

查看答案和解析>>

同步練習(xí)冊(cè)答案