(本小題滿分14分)

設(shè)不等式確定的平面區(qū)域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012082414563583998321/SYS201208241457061543151711_ST.files/image002.png">,確定的平面區(qū)域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012082414563583998321/SYS201208241457061543151711_ST.files/image004.png">.

(1)定義橫、縱坐標(biāo)為整數(shù)的點(diǎn)為“整點(diǎn)”,在區(qū)域內(nèi)任取3個(gè)整點(diǎn),求這些整點(diǎn)中恰有2個(gè)整點(diǎn)在區(qū)域的概率;

(2)在區(qū)域內(nèi)任取3個(gè)點(diǎn),記這3個(gè)點(diǎn)在區(qū)域的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

 

【答案】

(1).                                                

(2)的分布列為:

 

0

1

2

3

的數(shù)學(xué)期望

(或者: ,故

【解析】(1)先作出不等式的可行域,找出其中的整點(diǎn),從而求出所求事件的概率.

(2)先確定X的可能取值為0,1,2,3,然后再求出每一值對(duì)應(yīng)的概率,列出分布列,根據(jù)期望公式求出期望值.

(1)依可知平面區(qū)域的整點(diǎn)為共有13個(gè),平面區(qū)域的整點(diǎn)為共有5個(gè),  ∴.                                                

(2)依題可得:平面區(qū)域的面積為:,平面區(qū)域的面積為:

在區(qū)域內(nèi)任取1個(gè)點(diǎn),則該點(diǎn)在區(qū)域內(nèi)的概率為,

易知:的可能取值為,                     

 

的分布列為:

 

0

1

2

3

的數(shù)學(xué)期望

(或者: ,故

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案