已知=(cos-cos),=(+cos,sin)且.求的值.
【答案】分析:本題先要應(yīng)用向量的有關(guān)知識及二倍角公式將已知條件化簡,然后將所求式子的角向已知角轉(zhuǎn)化.
解答:解:由 得,,

=
點(diǎn)評:本題考查兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運(yùn)算,二倍角公式,兩角差的余弦公式的應(yīng)用,得到sinx+cosx=,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C為銳角△ABC的三個內(nèi)角,向量
m
=(2-2sinA,cosA+sinA),
n
=(1+sinA,cosA-sinA),且
m
n

(Ⅰ)求A的大;
(Ⅱ)求y=2sin2B+cos(
3
-2B)取最大值時角B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,sinθ)
b
=(1,
3
)
,其中θ∈[0,π],則
a
b
的取值范圍是( 。
A、[-1,2]
B、[-1,1]
C、[-2,2]
D、[-
3
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C坐標(biāo)分別為A(3,0),B(0,3),C(cosα,sinα),α∈(0,π)
(1)若|
AC
|=|
BC
|
,求角α;
(2)若
AC
BC
=-1
,求
2sin2sinα+2sinαcosα
1-tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應(yīng)的一個特征向量為
1
-4
,點(diǎn)P(2,-1)在矩陣A對應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=cos(2x+φ)(φ>0),則下列命題正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案