設(shè)函數(shù)(1)當(dāng)時,求的最大值;(2)令,(),其圖象上任意一點(diǎn)處切線的斜率恒成立,求實數(shù)的取值范圍;(3)當(dāng),,方程有唯一實數(shù)解,求正數(shù)的值.
(1)的極大值為,此即為最大值;(2);(3)

試題分析:(1)依題意,知的定義域為(0,+∞),當(dāng)時,
(2′)令=0,  解得.(∵
因為當(dāng)時,,此時單調(diào)遞增;當(dāng)時,,此時單調(diào)遞減。所以的極大值為,此即為最大值          4分
(2),,則有,在上恒成立,
所以,(8′)當(dāng)時,取得最大值,所以          8分
(3)因為方程有唯一實數(shù)解,所以有唯一實數(shù)解,
設(shè),則.令
因為,,所以(舍去),
當(dāng)時,,在(0,)上單調(diào)遞減,當(dāng)時,,在(,+∞)單調(diào)遞增   當(dāng)時,=0,取最小值 則所以,因為,所以(*)設(shè)函數(shù),因為當(dāng)時,是增函數(shù),所以至多有一解.因為,所以方程(*)的解為,即,解得.         12分
點(diǎn)評:典型題,切線的斜率,等于在切點(diǎn)的導(dǎo)函數(shù)值。利用導(dǎo)數(shù)研究函數(shù)的極值,一般遵循“求導(dǎo)數(shù)、求駐點(diǎn)、研究導(dǎo)數(shù)的正負(fù)、確定極值”,利用“表解法”,清晰易懂。不等式恒成立問題,往往通過構(gòu)造函數(shù),通過研究函數(shù)的最值確定參數(shù)的范圍。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

武漢煉油廠某分廠將原油精練為汽油,需對原油進(jìn)行冷卻和加熱,如果第x小時時,原油溫度(單位:℃)為,那么,原油溫度的瞬時變化率的最小值是( 。
A.8B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是偶函數(shù),若曲線在點(diǎn)處的切線的斜率為1,則該曲線在點(diǎn)處的切線的斜率為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知的最小值為,則二項式的展開式中的常數(shù)項是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的最大值為3,則的圖象的一條對稱軸的方程是    (     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間.
(3)設(shè),如果過點(diǎn)可作曲線的三條切線,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線方程,若對任意實數(shù),直線,都不是曲線的切線,則實數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案