20.已知拋物線C:y2=2px(0<p<4)的焦點(diǎn)為F,點(diǎn)P為C上一動(dòng)點(diǎn),A(4,0),B(p,$\sqrt{2}$p),且|PA|的最小值為$\sqrt{15}$,則|BF|等于( 。
A.4B.$\frac{9}{2}$C.5D.$\frac{11}{2}$

分析 利用|PA|的最小值為$\sqrt{15}$,求出p,可得B的坐標(biāo),利用拋物線的定義,即可得出結(jié)論.

解答 解:設(shè)P(x,y),則|PA|=$\sqrt{(x-4)^{2}+{y}^{2}}$=$\sqrt{(x-4+p)^{2}+8p-{p}^{2}}$,
∴x=4-p時(shí),|PA|的最小值為$\sqrt{8p-{p}^{2}}$=$\sqrt{15}$,
∵0<p<4,∴p=3,
∴B(3,3$\sqrt{2}$),
∴|BF|=3+$\frac{3}{2}$=$\frac{9}{2}$,
故選B.

點(diǎn)評 本題考查拋物線的定義與方程,考查配方法的運(yùn)用,正確求出p是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的最小值為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋物線y2=2px(p>0)的焦點(diǎn)為F,弦AB過F點(diǎn)且傾斜角為60°,|AF|>|BF|,則$\frac{{|{AF}|}}{{|{BF}|}}$的值為(  )
A.2B.3C.4D.1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,正方形ABCD和菱形ACEF所在平面互相垂直,∠ACE=60°.四棱錐E-ABCD的體積是36$\sqrt{6}$.
(Ⅰ)求證:DE∥平面ABF
(Ⅱ)求四面體ABEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知二次函數(shù)f(x)=ax2+bx,若f(x+1)為偶函數(shù),且方程f(x)=x有且只有一個(gè)實(shí)數(shù)根.求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求證:已知x,y都是正實(shí)數(shù),求證:x3+y3≥x2y+xy2
(2)求證:已知x,y,z都是正數(shù),求證:$\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}≥\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$•.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,三個(gè)內(nèi)角A、B、C所對的邊分別為a、b、c,已知A=$\frac{π}{3}$,c=4,△ABC的面積為2$\sqrt{3}$,則a=$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)對任意x,y∈R滿足f(x+y)+f(x-y)=2f(x)f(y),則下列關(guān)于函數(shù)奇偶性的說法一定正確的是( 。
A.是偶函數(shù)但不是奇函數(shù)B.是奇函數(shù)但不是偶函數(shù)
C.是非奇非偶函數(shù)D.可能是奇函數(shù)也可能是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知在三角形ABC中,角A,B都是銳角,且sin(B+C)+3sin(A+C)cosC=0,則tanA的最大值為(  )
A.$\frac{3}{4}$B.$\sqrt{3}$C.$\frac{1}{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案