設(shè)數(shù)列(an)為等差數(shù)列,a1=1,公差為1,{bn}也是等差數(shù)列,b1=0,公差為2,則=   
【答案】分析:由等差數(shù)列的求和公式可得,=n(n-1),由通項公式可na3n,而,代入,從而可求極限
解答:解:由等差數(shù)列的求和公式可得,=n(n-1),
由通項公式可na3n=n[1+(3n-1)×1]=3n2
===
故答案為:
點評:本題主要考查了數(shù)列極限的求解,解題的關(guān)鍵是靈活利用等差數(shù)列的通項公式及求和公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=1,點(an,an+1)在函數(shù)f(x)=x2+4x+2的圖象上,其中n=1,2,3,4,…
(1)證明:數(shù)列{lg(an+2)}是等比數(shù)列;
(2)設(shè)數(shù)列{an+2}的前n項積為Tn,求Tn及數(shù)列{an}的通項公式;
(3)已知bn
1
an+1
1
an+3
的等差中項,數(shù)列{bn}的前n項和為Sn,求證:
3
8
Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx滿足條件:①f(0)=f(1);  ②f(x)的最小值為-
1
8

(1)求函數(shù)f(x)的解析式;
(2)設(shè)數(shù)列{an}的前n項積為Tn,且Tn=(
4
5
f(n),求數(shù)列{an}的通項公式;
(3)在(2)的條件下,若5f(an)是bn與an的等差中項,試問數(shù)列{bn}中第幾項的值最小?求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,滿足a1=1,且對于任意n∈N*,Sn+2n是an+1與a1的等差中項.
(1)求a2,a3的值;
(2)求證數(shù)列{an+2n}是等比數(shù)列;
(3)求{
an3n
}
的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且an與1的等差中項等于Sn與1的等比中項.
(1)求a1的值及數(shù)列{an}的通項公式;
(2)設(shè)bn=
2
1+an
 
+(-1)n-1×2n+1λ
,若數(shù)列{bn}是單調(diào)遞增數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項.
(I)求數(shù)列{an},{bn}的通項公式;
(II)求數(shù)列{
anbn
}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案