已知50<x≤80,y=
105(x-50)
(x-40)2
,則當(dāng)x=______時(shí),y取最大值,最大值為______.
y′=
105[(x-40)2-2(x-50)(x-40)] 
(x-40)4
=
-x+60
(x-40)3

當(dāng)50<x≤80,時(shí)(x-10)3>0,
由y′>0得x<60
由y′<0得x>60
所以x=60是函數(shù)的極大值點(diǎn),也是最大值點(diǎn),f(60)=2500
故答案為:60   2500
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)甲校高二年級(jí)有1100人,乙校高二年級(jí)有900人,為了統(tǒng)計(jì)兩個(gè)學(xué)校高二年級(jí)在學(xué)業(yè)水平考試中的數(shù)學(xué)學(xué)科成績(jī),采用分層抽樣的方法在兩校共抽取了200名學(xué)生的數(shù)學(xué)成績(jī),如下表:(已知本次測(cè)試合格線是50分,兩校合格率均為100%)
甲校高二年級(jí)數(shù)學(xué)成績(jī):
分組 [50,60) [60,70) [70,80) [80,90) [90,100]
頻數(shù) 10 25 35 30 x
乙校高二年級(jí)數(shù)學(xué)成績(jī):
分組 [50,60) [60,70) [70,80) [80,90) [90,100]
頻數(shù) 15 30 25 y 5
   (I)計(jì)算x,y的值,并分別估計(jì)以上兩所學(xué)校數(shù)學(xué)成績(jī)的平均分(精確到1分)
(II)若數(shù)學(xué)成績(jī)不低于80分為優(yōu)秀,低于80分為非優(yōu)秀,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)寫下面2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“兩個(gè)學(xué)校的數(shù)學(xué)成績(jī)有差異?”
甲校 乙校 總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
附:
P(K2≥k0 0.10 0.05 0.025 0.010 0.005
k0 2.706 3.841 5.024 6.635 7.879
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知50<x≤80,y=
105(x-50)(x-40)2
,則當(dāng)x=
60
60
時(shí),y取最大值,最大值為
2500
2500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)A產(chǎn)品的年固定成本為250萬元,若A產(chǎn)品的年產(chǎn)量為x萬件,則需另投入成本C(x)(萬元).已知A產(chǎn)品年產(chǎn)量不超過80萬件時(shí),C(x)=
1
3
x2+10x;A產(chǎn)品年產(chǎn)量大于80萬件時(shí),C(x)=51x+
10000
x-80
-1450.因設(shè)備限制,A產(chǎn)品年產(chǎn)量不超過200萬件.現(xiàn)已知A產(chǎn)品的售價(jià)為50元/件,且年內(nèi)生產(chǎn)的A產(chǎn)品能全部銷售完.設(shè)該廠生產(chǎn)A產(chǎn)品的年利潤(rùn)為L(zhǎng)(萬元).
(1)寫出L關(guān)于x的函數(shù)解析式L(x);
(2)當(dāng)年產(chǎn)量為多少時(shí),該廠生產(chǎn)A產(chǎn)品所獲的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省孝感高中高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知50<x≤80,y=,則當(dāng)x=    時(shí),y取最大值,最大值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案