已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,a2=3,若對(duì)任意n∈N*,都有an+2-an=2成立,則S100=(  )
A、2550B、2600
C、5050D、5100
考點(diǎn):數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:對(duì)任意n∈N*,都有an+2-an=2成立,可得:對(duì)于數(shù)列{an}的所有奇數(shù)項(xiàng)、偶數(shù)項(xiàng)分別形成等差數(shù)列,再利用等差數(shù)列的前n項(xiàng)和公式即可得出.
解答: 解:∵對(duì)任意n∈N*,都有an+2-an=2成立,
∴對(duì)于數(shù)列{an}的所有奇數(shù)項(xiàng)、偶數(shù)項(xiàng)分別形成等差數(shù)列,
∴S100=(a1+a3+…+a99)+(a2+a4+…+a100
=(50×1+
50×49
2
×2)+(50×3+
50×49
2
×2)

=5100.
故選:D.
點(diǎn)評(píng):本題考查了等差數(shù)列的定義、前n項(xiàng)和公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
3
sinθ+cosθ=m+1,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=(mx-1)ex在(0,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若x3+y3≤1,則x+y<2”的逆否命題為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從平面α外一點(diǎn)P引與平面α相交的直線,使得點(diǎn)P到交點(diǎn)的距離為1,則滿足條件的直線不可能有( 。
A、0條B、1條C、2條D、無(wú)數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是(  )
(1)如果一個(gè)平面內(nèi)有兩條直線平行于另一個(gè)平面,那么這兩個(gè)平面平行;
(2)如果一個(gè)平面內(nèi)有無(wú)數(shù)條直線平行于兩一個(gè)平面,那么這兩個(gè)平面平行;
(3)如果一個(gè)平面內(nèi)有兩條相交直線,分別平行于另一個(gè)平面內(nèi)的兩條直線,那么這兩個(gè)平面平行;
(4)如果一個(gè)平面內(nèi)一個(gè)角(銳角或鈍角)的兩邊和另一個(gè)平面內(nèi)的一個(gè)角的兩邊分別平行,那么這兩個(gè)平面平行.
A、只有(1)(2)(4)
B、只有(2)(3)(4)
C、只有(3)(4)
D、四個(gè)命題都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=ax3+bx2+cx+d(a>0),則函數(shù)f(x)在R上為增函數(shù)的充要條件為( 。
A、b2<3ac
B、b2>3ac
C、b2≤3ac
D、b2≥3ac

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙三人值周一至周六的班,每人值兩天班,若甲不值周一、乙不值周六,則可排出不同的值班表數(shù)為( 。
A、30B、42C、48D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將y=cos(
x
2
+
π
6
)的圖象向右平移
π
2
個(gè)單位,所得曲線對(duì)應(yīng)的函數(shù)(  )
A、在(0,
π
2
)單調(diào)遞減
B、在(0,
π
2
)單調(diào)遞增
C、在(
π
2
,π)單調(diào)遞減
D、在(
π
2
,π)單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案