過雙曲線x2-y2=1上一點Q作直線x+y=2的垂線,垂足為N,則線段QN的中點P的軌跡方程為( )
A.2x2-2y2-2x-1=0
B.x2+y2=1
C.2x2+2y2-y=0
D.2x2-2y2-2x+2y-1=0
【答案】分析:設P(x,y),欲求其軌跡方程,即尋找其坐標間的關(guān)系,根據(jù)垂線的關(guān)系及點Q在雙曲線上,代入其方程即可得到.
解答:解:設P(x,y),Q(x1,y1),則N(2x-x1,2y-y1),
∵N在直線x+y=2上,
∴2x-x1+2y-y1=2①
又∵PQ垂直于直線x+y=2,∴=1,
即x-y+y1-x1=0.②
由①②得
又∵Q在雙曲線x2-y2=1上,
∴x12-y12=1.
∴(x+y-1)2-(x+y-1)2=1.
整理,得2x2-2y2-2x+2y-1=0即為中點P的軌跡方程.
故選D.
點評:本題主要考查了軌跡方程的問題.求曲線的軌跡方程是解析幾何的基本問題.代入法:動點所滿足的條件不易表述或求出,但形成軌跡的動點P(x,y)卻隨另一動點Q(x′,y′)的運動而有規(guī)律的運動,且動點Q的軌跡為給定或容易求得,則可先將x′,y′表示為x,y的式子,再代入Q的軌跡方程,然而整理得P的軌跡方程,代入法也稱相關(guān)點法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

過雙曲線x2-y2=8的右焦點F2有一條弦PQ,PQ=7,F(xiàn)1是左焦點,那么△F1PQ的周長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線x2-y2=4的右焦點F作傾斜角為1050的直線,交雙曲線于P、Q兩點,則|FP|•|FQ|的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線x2-y2=8的右焦點F2的一條弦PQ,|PQ|=7,F(xiàn)1是左焦點,那么△F1PQ的周長為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•濰坊三模)已知圓心在x軸正半軸上的圓C過雙曲線x2-y2=l的右頂點,且被雙曲線的一條漸近線截得的弦長為2
7
,則圓C的方程為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設過雙曲線x2-y2=9左焦點F1的直線交雙曲線的左支于點P,Q,F(xiàn)2為雙曲線的右焦點.若PQ=7,則△F2PQ的周長為(  )

查看答案和解析>>

同步練習冊答案