【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的單位長度,以坐標(biāo)原點為極點,軸正半軸為極軸)中,曲線的極坐標(biāo)方程為.

1)若可,試判斷曲線的位置關(guān)系;

2)若曲線交于點,兩點,且,滿足.的值.

【答案】1)相離;(2.

【解析】

1)將代入,可將轉(zhuǎn)化為直角坐標(biāo)方程,結(jié)合點到直線距離即可判斷的位置關(guān)系;

2)將直線的參數(shù)方程代入圓的直角坐標(biāo)方程,由參數(shù)方程的幾何意義即可確定的關(guān)系,進而求得的值.

1)曲線的參數(shù)方程為,化為普通方程為,

曲線的極坐標(biāo)方程為

的直角坐標(biāo)方程,是以為圓心,1為半徑的圓,

因為圓心到直線的距離,

所以曲線相離.

2)將代入.

整理得,

,

設(shè)交點對應(yīng)的參數(shù)分別為,

,

因此所以,

所以,

所以,

解得,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),,其前項和為,且當(dāng)時,、、構(gòu)成等差數(shù)列.

1)求數(shù)列的通項公式;

2)若數(shù)列滿足,數(shù)列的前項和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上世紀(jì)末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術(shù)及先進的數(shù)學(xué)水平,也印證了我國古代音律與歷法的密切聯(lián)系.2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數(shù)據(jù)(骨笛的彎曲忽略不計),夏至(或冬至)日光(當(dāng)日正午太陽光線)與春秋分日光(當(dāng)日正午太陽光線)的夾角等于黃赤交角.

由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應(yīng)的年代如下表:

黃赤交角

正切值

0.439

0.444

0.450

0.455

0.461

年代

公元元年

公元前2000

公元前4000

公元前6000

公元前8000

根據(jù)以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是( )

A.公元前2000年到公元元年B.公元前4000年到公元前2000

C.公元前6000年到公元前4000D.早于公元前6000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,且,

(Ⅰ)求數(shù)列的通項,及前項和

(Ⅱ)請你在數(shù)列的前4項中選出三項,組成公比的絕對值小于1的等比數(shù)列的前3項,并記數(shù)列的前n項和為.若對任意正整數(shù),不等式恒成立,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的標(biāo)準(zhǔn)方程是,設(shè)是橢圓的左焦點,為直線上任意一點,過的垂線交橢圓于點,.

1)證明:線段平分線段(其中為坐標(biāo)原點);

2)當(dāng)最小時,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個班級(各40名學(xué)生)進行一門考試,為易于統(tǒng)計分析,將甲、乙兩個班學(xué)生的成績分成如下四組:,,,,并分別繪制了如下的頻率分布直方圖:

規(guī)定:成績不低于90分的為優(yōu)秀,低于90分的為不優(yōu)秀.

1)根據(jù)這次抽查的數(shù)據(jù),填寫下面的列聯(lián)表:

優(yōu)秀

不優(yōu)秀

合計

甲班

乙班

合計

2)根據(jù)(1)中的列聯(lián)表,能否有的把握認為成績是否優(yōu)秀與班級有關(guān)?

附:臨界值參考表與參考公式

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線的普通方程和曲線的直角坐標(biāo)方程;

2)若射線)與直線和曲線分別交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若存在極值點1,求的值;

(2)若存在兩個不同的零點,求證: 為自然對數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點到直線的距離為,過點的直線交于、兩點.

1)求拋物線的準(zhǔn)線方程;

2)設(shè)直線的斜率為,直線的斜率為,若,且的交點在拋物線上,求直線的斜率和點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案