已知點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線與軌跡交于兩點(diǎn).

(Ⅰ)寫(xiě)出軌跡的方程;

(Ⅱ)求的值.

 

【答案】

(1)

(2)

【解析】

試題分析:解析:(Ⅰ)設(shè),由橢圓定義可知,點(diǎn)的軌跡是以為焦點(diǎn),長(zhǎng)半軸為2的橢圓.它的短半軸,故曲線.……6分

(Ⅱ)設(shè), 聯(lián)立整理得,

,.……12分

考點(diǎn):直線與橢圓的位置關(guān)系

點(diǎn)評(píng):主要是考查了橢圓的定義以及直線與橢圓的位置關(guān)系的運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州一模)已知拋物線C1:x2=2py(p>0)上縱坐標(biāo)為p的點(diǎn)到其焦點(diǎn)的距離為3.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)過(guò)點(diǎn)P(0,-2)的直線交拋物線C1于A,B兩點(diǎn),設(shè)拋物線C1在點(diǎn)A,B處的切線交于點(diǎn)M,
(。┣簏c(diǎn)M的軌跡C2的方程;
(ⅱ)若點(diǎn)Q為(ⅰ)中曲線C2上的動(dòng)點(diǎn),當(dāng)直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時(shí),試判斷
kPQ
kAQ
+
kPQ
kBQ
是否為常數(shù)?若是,求出這個(gè)常數(shù);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)模擬)已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸正半軸的拋物線上有一點(diǎn)A(
12
,m)
,A點(diǎn)到拋物線焦點(diǎn)的距離為1.
(1)求該拋物線的方程;
(2)設(shè)M(x0,y0)為拋物線上的一個(gè)定點(diǎn),過(guò)M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過(guò)定點(diǎn)(x0+2,-y0).
(3)直線x+my+1=0與拋物線交于E,F(xiàn)兩點(diǎn),在拋物線上是否存在點(diǎn)N,使得△NEF為以EF為斜邊的直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn),點(diǎn)為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足=0,則動(dòng)點(diǎn)到兩點(diǎn)、的距離之和的最小值為       (    )

       A.4      B.5   C.6      D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高三下學(xué)期數(shù)學(xué)單元測(cè)試5-理科 題型:選擇題

 已知兩點(diǎn),點(diǎn)為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足=0,則動(dòng)點(diǎn)到兩點(diǎn)、的距離之和的最小值為    (    )

    A.4    B.5    C.6    D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案