如圖,已知圓外有一點(diǎn),作圓的切線(xiàn),為切點(diǎn),過(guò)的中點(diǎn),作割線(xiàn),交圓于、兩點(diǎn),連接并延長(zhǎng),交圓于點(diǎn),連續(xù)交圓于點(diǎn),若

(1)求證:△∽△;

(2)求證:四邊形是平行四邊形.

 

【答案】

(1)由切割線(xiàn)定理,及N是PM的中點(diǎn),可得PN2=NA?NB,結(jié)合∠PNA=∠BNP,可得△PNA∽△BNP,則∠APN=∠PBN,即∠APM=∠PBA;再由MC=BC,可得∠MAC=∠BAC,再由等角的補(bǔ)角相等可得∠MAP=∠PAB,進(jìn)而得到△APM∽△ABP

(2)由∠ACD=∠PBN,可得∠PCD=∠CPM,即PM∥CD;由△APM∽△ABP,PM是圓O的切線(xiàn),可證得∠MCP=∠DPC,即MC∥PD;再由平行四邊形的判定定理得到四邊形PMCD是平行四邊形.

【解析】

試題分析:證明:(Ⅰ)∵是圓的切線(xiàn),是圓的割線(xiàn),的中點(diǎn),證明:(Ⅰ)∵PM是圓O的切線(xiàn),NAB是圓O的割線(xiàn),N是PM的中點(diǎn),∴MN2=PN2=NA?NB,又∵∠PNA=∠BNP,

∴△PNA∽△BNP,∴∠APN=∠PBN,即∠APM=∠PBA,.∵M(jìn)C=BC,

∴∠MAC=∠BAC,∴∠MAP=∠PAB,∴△APM∽△ABP…(5分)

(Ⅱ)∵∠ACD=∠PBN,

∴∠ACD=∠PBN=∠APN,即∠PCD=∠CPM,

∴PM∥CD.∵△APM∽△ABP,∴∠PMA=∠BPA∵PM是圓O的切線(xiàn),∴∠PMA=∠MCP,∴∠PMA=∠BPA=∠MCP,即∠MCP=∠DPC,∴MC∥PD,∴四邊形PMCD是平行四邊形.…(10分)

考點(diǎn):切割線(xiàn)定理,圓周角定理

點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是切割線(xiàn)定理,圓周角定理,三角形相似的判定與性質(zhì),平行四邊形的判定,熟練掌握平面幾何的基本定理是解答本題的關(guān)鍵.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓O外有一點(diǎn)P,作圓O的切線(xiàn)PM,M為切點(diǎn),過(guò)PM的中點(diǎn)N,作割線(xiàn)NAB,交圓于A、B兩點(diǎn),連接PA并延長(zhǎng),交圓O于點(diǎn)C,連續(xù)PB交圓O于點(diǎn)D,若MC=BC.
(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高一下學(xué)期第一次階段考試?yán)砜茢?shù)學(xué) 題型:解答題

(14分)如圖7,.已知圓O和定點(diǎn)A(2,1),

由圓O外一點(diǎn)向圓O引切線(xiàn)PQ,切點(diǎn)為Q,且滿(mǎn)足.(1) 求實(shí)數(shù)ab間滿(mǎn)足的等量關(guān)系;

(2) 求線(xiàn)段PQ長(zhǎng)的最小值;(3) 若以P為圓心所作的圓P與圓O有公共點(diǎn),試求半徑取最小值時(shí)圓P的方程.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題9分)如圖:已知圓和定點(diǎn),由圓外一點(diǎn)向圓引切線(xiàn),切點(diǎn)為,且滿(mǎn)足

(1)求實(shí)數(shù)間滿(mǎn)足的等量關(guān)系;(2)求線(xiàn)段長(zhǎng)的最小值;(3)若以為圓心所作的圓與圓有公共點(diǎn),試求半徑最小時(shí)圓的方程

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考數(shù)學(xué)試卷4(理科)(解析版) 題型:解答題

如圖,已知圓O外有一點(diǎn)P,作圓O的切線(xiàn)PM,M為切點(diǎn),過(guò)PM的中點(diǎn)N,作割線(xiàn)NAB,交圓于A、B兩點(diǎn),連接PA并延長(zhǎng),交圓O于點(diǎn)C,連續(xù)PB交圓O于點(diǎn)D,若MC=BC.
(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案