精英家教網 > 高中數學 > 題目詳情
(2006•崇文區(qū)一模)某足球賽事中甲乙兩中球隊進入決賽,但乙隊明顯處于弱勢,乙隊為爭取勝利決定采取這樣的戰(zhàn)術:頑強防守,0:0逼平甲隊,進入點球大戰(zhàn).現規(guī)定:點球大戰(zhàn)中每隊各出5名隊員,且每名隊員都踢一球,假設在點球大戰(zhàn)中雙方每名運動員進球概率均為
34
.求:
(I)乙隊踢進4個球的概率有多大?
(II)5個點球過后是4:4或5:5平局的概率有多大?
分析:(I)直接根據n次獨立重復試驗中恰好發(fā)生k次的概率公式進行求解即可;
(II)先根據n次獨立重復試驗中恰好發(fā)生k次的概率公式分別求出5個點球過后是4:4的概率和5個點球過后是5:5的概率,然后根據互斥事件的概率公式進行求解即可.
解答:解:(I)乙隊踢進4個球的概率為P=
C
4
5
(
3
4
)
4
(
1
4
)= 5×
81
1024
=0.3995
(II)5個點球過后是4:4的概率為
C
4
5
(
3
4
)4(
1
4
)1
×
C
4
5
(
3
4
)4(
1
4
)1
=0.1564
5個點球過后是5:5的概率為(
3
4
)5
×(
3
4
)5
=0.0563
∴5個點球過后是4:4或5:5平局的概率為
C
4
5
(
3
4
)4(
1
4
)1
×
C
4
5
(
3
4
)4(
1
4
)1
+(
3
4
)5
×(
3
4
)5
=0.2127
答:乙隊踢進4個球的概率為0.3995,5個點球過后是4:4或5:5平局的概率為0.2127.
點評:本題主要考查了離散型隨機變量的期望和分布列,以及n次獨立重復試驗中恰好發(fā)生k次的概率,同時考查了計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2006•崇文區(qū)一模)如果復數
1+bi
1+i
(b∈R)的實部和虛部互為相反數,則b等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•崇文區(qū)一模)已知直線m、n及平面α、β,則下列命題正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•崇文區(qū)一模)如圖,直三棱柱ABC-A′B′C′中,CB⊥平面ABB′A′,點E是棱BC的中點,AB=BC=AA′
(I)求證直線CA′∥平面AB′E;
(II)求二面角C-A′B′-B的大小;
(III)求直線CA′與平面BB′C′C所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•崇文區(qū)一模)已知f(x)=ax3+x2+cx是定義在R上的函數,f(x)在[-1,0]和[4,5]上是減函數,在[0,2]上是增函數.
(I)求c的值;
(II)求a的取值范圍;
(III)在函數f(x)的圖象上是否存在一點M(x0,y0),使得曲線y=f(x)在點M處的切線的斜率為3,若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案