參考公式: .其中">
【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個問題,在火車站分別隨機調(diào)研了 名女性或 名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖.
(1)完成下列 列聯(lián)表:
喜歡旅游 | 不喜歡旅游 | 估計 | |
女性 | |||
男性 | |||
合計 |
(2)能否在犯錯誤概率不超過 的前提下認為“喜歡旅游與性別有關(guān)”.
附:
/td> |
參考公式:
,其中
【答案】
(1)解:由等高條形圖得:
喜歡旅游的女性人數(shù)為 ,不喜歡旅游的女性人數(shù)為 ;喜歡旅游和不喜歡旅游的男性人數(shù)均為 .則對應(yīng)的 列聯(lián)表為:
喜歡旅游 | 不喜歡旅游 | 估計 | |
女性 | |||
男性 | |||
合計 |
(2)解: 的觀測值 不能在犯錯誤概率不超過 的前提下認為“喜歡旅游與性別有關(guān)”
【解析】(1)根據(jù)題意結(jié)合所給的數(shù)據(jù)可得喜歡旅游的女性人數(shù)為35,不喜歡旅游的女性人數(shù)為15;喜歡旅游和不喜歡旅游的男性人數(shù)均為25由此即可求得列表內(nèi)的值。(2)結(jié)合(1)的結(jié)論計算可得K2 的觀測值,利用該值與標(biāo)準(zhǔn)值的大小關(guān)系可得出不能在犯錯誤概率不超過0.025的前提下認為“喜歡旅游與性別有關(guān)”即的結(jié)果。
【考點精析】解答此題的關(guān)鍵在于理解用樣本的頻率分布估計總體分布的相關(guān)知識,掌握樣本數(shù)據(jù)的頻率分布表和頻率分布直方圖,是通過各小組數(shù)據(jù)在樣本容量中所占比例大小來表示數(shù)據(jù)的分布規(guī)律,它可以讓我們更清楚的看到整個樣本數(shù)據(jù)的頻率分布情況,并由此估計總體的分布情況.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集具有性質(zhì):對任意的 ,,使得成立.
(Ⅰ)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(Ⅱ)求證;
(Ⅲ)若,求數(shù)集中所有元素的和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1 , C2的極坐標(biāo)方程分別為ρ=2cosθ, ,射線θ=φ, , 與曲線C1交于(不包括極點O)三點A,B,C.
(Ⅰ)求證: ;
(Ⅱ)當(dāng) 時,求點B到曲線C2上的點的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在無窮數(shù)列中, ,對于任意,都有, .設(shè),記使得成立的n的最大值為.
(Ⅰ)設(shè)數(shù)列{an}為1,3,5,7,…,寫出b1,b2,b3的值;
(Ⅱ)若{an}為等比數(shù)列,且a2=2,求b1+b2+b3+…+b50的值;
(Ⅲ)若{bn}為等差數(shù)列,求出所有可能的數(shù)列{an}.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為梯形,CD∥AB,AB=2CD,AC交BD于O,銳角△PAD所在平面⊥底面ABCD,PA⊥BD,點Q在側(cè)棱PC上,且PQ=2QC.
(1)求證:PA∥平面QBD;
(2)求證BD⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次國際學(xué)術(shù)會議上,來自四個國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國人,還會說英語.
乙是法國人,還會說日語.
丙是英國人,還會說法語.
丁是日本人,還會說漢語.
戊是法國人,還會說德語.
則這五位代表的座位順序應(yīng)為( )
A.甲丙丁戊乙
B.甲丁丙乙戊
C.甲乙丙丁戊
D.甲丙戊乙丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點P(0,1)在圓C:x2+y2+2mx﹣2y+m2﹣4m+1=0內(nèi),若存在過點P的直線交圓C于A、B兩點,且△PBC的面積是△PAC的面積的2倍,則實數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2eax .
(Ⅰ)當(dāng)a<0時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)在(1)條件下,求函數(shù)f(x)在區(qū)間[0,1]上的最大值;
(Ⅲ)設(shè)函數(shù)g(x)=2ex﹣ ,求證:當(dāng)a=1,對x∈(0,1),g(x)﹣xf(x)>2恒成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com