已知數(shù)列{an}滿足a1=1,.求證:
【答案】分析:本題考查的是數(shù)列與不等式的綜合類問題.解答時(shí)應(yīng)用數(shù)學(xué)歸納法,首先驗(yàn)證當(dāng)n=2時(shí),然后假設(shè)當(dāng)n=k(k≥2,k∈N*)時(shí),不等式成立,再分析當(dāng)n=k+1時(shí)的情況,此時(shí)要注意一定要用上假設(shè).最后下好結(jié)論即可.
解答:證明:記所證不等式為(*)式,用數(shù)學(xué)歸納法證明如下:
(1)當(dāng)n=2時(shí),∵a1=1∴
∴(*)式成立.
(2)假設(shè)當(dāng)n=k(k≥2,k∈N*)時(shí),(*)式成立,
即有
那么,當(dāng)n=k+1時(shí),
(x>1)∵在(1,+∞)上是單調(diào)增函數(shù),



先證
兩邊同乘,即證
即證4k2-1<4k2上式成立,∴①式成立.
再證
兩邊同乘即證
即證9k2<9k2+3k-2∵k≥2∴上式成立,則②式成立.

∴當(dāng)n=k+1時(shí),(*)式也成立,
根據(jù)(1),(2)知,(*)式成立.
點(diǎn)評(píng):本題考查的是數(shù)列與不等式的綜合類問題.解答時(shí)的過程當(dāng)中充分體現(xiàn)了數(shù)學(xué)歸納法的思想、計(jì)算的能力以及問題轉(zhuǎn)化的能力.值得同學(xué)們體會(huì)反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案