函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象關(guān)于直線x=對稱,它的最小正周期為π,則函數(shù)f(x)圖象的一個對稱中心是( )
A.(,0)
B.(,0)
C.(,0)
D.(-,0)
【答案】分析:由周期求出ω=2,再由圖象關(guān)于直線x=對稱,求得φ=.得到函數(shù)f(x)=Asin(2x+),令2x+=kπ,k∈z,求得x=-,從而得到對稱中心的坐標,進而求得圖象的一個對稱中心.
解答:解:由題意可得 =π,∴ω=2,可得f(x)=Asin(2x+φ).
再由函數(shù)圖象關(guān)于直線x=對稱,故f()=Asin(+φ)=±A,故可取φ=-
故函數(shù)f(x)=Asin(2x-),令2x-=kπ,k∈z,
可得 x=+,k∈z,故函數(shù)的對稱中心為 (+,0),k∈z.
故函數(shù)f(x)圖象的一個對稱中心是(,0),
故選B.
點評:本題主要考查由函數(shù)y=Asin(ωx+φ )的部分圖象求函數(shù)的解析式,正弦函數(shù)的對稱性,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2008)的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為
π
2
,
(1)求函數(shù)f(x)的解析式和當x∈[0,π]時f(x)的單調(diào)減區(qū)間;
(2)設(shè)a∈(0,
π
2
),則f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+?)(其中A>0,ω>0,|?|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=2cos2x的圖象,則只要將f(x)的圖象)向
平移
π
12
π
12
個單位長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
4
)(其中x∈R,A>0,ω>0)的最大值為4,最小正周期為
3

(1)求函數(shù)f(x)的解析式;
(2)設(shè)a∈(
π
2
,π),且f(
2
3
a+
π
12
)=
1
2
,求cosa的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,若△EFG是邊長為2的正三角形,則f(1)=(  )
A、
6
2
B、
3
2
C、2
D、
3

查看答案和解析>>

同步練習冊答案