已知等比數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)在與之間插入個數(shù)連同與按原順序組成一個公差為()的等差數(shù)列.
①設,求數(shù)列的前和;
②在數(shù)列中是否存在三項(其中成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項;若不存在,說明理由.
(1);(2)①②不存在.
【解析】
試題分析:(1)要看清問題的實質就是,那么這就是我們熟悉的問題,利用,轉化為和公比的式子,可解出,再由題目條件得出關于首項的關系式,求出等比數(shù)列的首項即可求出通項公式;(2)①由新數(shù)列的的首首項和末項及項數(shù)可求出公差,根據其表達式的結構特征,再考慮求,本題可用錯位相減法;②此類問題,一般先假設存在符合條件的數(shù)列,解出來則存在,如果得到矛盾的結果,則假設錯誤,這樣的數(shù)列則不存在.
試題解析:(1)設數(shù)列的公比為,由已知可得, 1分
由已知,,所以,
兩式相減得,,解得, 3分
又,解得, 5分
故 6分
(2)由(1),知 7分
①, 8分
,
10分
故 11分
②假設在數(shù)列中存在三項(其中成等差數(shù)列)成等比數(shù)列,
則,即. 13分
因為成等差數(shù)列,所以,(*)代入上式得: ,(**)
由(*),(**),得,這與題設矛盾. 15分
所以,在數(shù)列中不存在三項(其中成等差數(shù)列)成等比數(shù)列. 16分
考點:等差數(shù)列與等比數(shù)列、錯位相減法.
科目:高中數(shù)學 來源: 題型:
已知等比數(shù)列滿足:,。
(I)求數(shù)列的通項公式;
(II)是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年福建省四地六高三第三次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分12分)已知等比數(shù)列滿足。
(1)求數(shù)列的通項公式;
(2)設,,求數(shù)列的前項和。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年浙江省名校名師新編“百校聯(lián)盟”高三第一次調研考試數(shù)學理卷 題型:選擇題
已知等比數(shù)列滿足,且是方程的兩個實根,則當等于 ( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com