【題目】給出下列命題:
①在△ABC中,若A<B,則sinA<sinB;
②在同一坐標(biāo)系中,函數(shù)y=sinx與y=lgx的交點個數(shù)為2個;
③函數(shù)y=|tan2x|的最小正周期為 ;
④存在實數(shù)x,使2sin(2x﹣ )﹣1= 成立;
其中正確的命題為(寫出所有正確命題的序號).
【答案】①③
【解析】解:①在△ABC中,若A<B,由正弦定理得a<b,則由 得sinA<sinB成立,故①正確;
②在同一坐標(biāo)系中,作出函數(shù)y=sinx與y=lgx圖象如圖:
∵lg10=1,∴兩個圖象的交點個數(shù)為3個;故②錯誤,
③函數(shù)y=|tan2x|的最小正周期和y=tan2x的周期相同,為T= ,故③正確,;
④由2sin(2x﹣ )﹣1= ,得sin(2x﹣ )= >1,
則不存在實數(shù)x,使2sin(2x﹣ )﹣1= 成立;故④錯誤,
所以答案是:①③
【考點精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中的前n項和為Sn= ,又an=log2bn .
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin(2x+ ),其中x∈R,下列結(jié)論中正確的是( )
A.f(x)是最小正周期為π的偶函數(shù)
B.f(x)的一條對稱軸是
C.f(x)的最大值為2
D.將函數(shù) 的圖象向左平移 個單位得到函數(shù)f(x)的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共l2分)
如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點P,使C1P=A1C1,連接AP交棱CC1于D.
(Ⅰ)求證:PB1∥平面BDA1;
(Ⅱ)求二面角A-A1D-B的平面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||< )的部分圖象如圖所示:
(1)求函數(shù)f(x)的解析式;
(2)若g(x)的圖象是將f(x)的圖象先向右平移1個單位,然后縱坐標(biāo)不變橫坐標(biāo)縮短到原來的一半得到的,求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50],[50,60],…,[80,90],[90,100]
(1)求頻率分布圖中a的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在[40,60]的受訪職工中,隨機(jī)抽取2人,求此2人評分都在[40,50]的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (是自然對數(shù)的底數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若,當(dāng)對任意恒成立時, 的最大值為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次公里的自行車個人賽中,25名參賽選手的成績(單位:分鐘)的莖葉圖如圖所示:
(1)現(xiàn)將參賽選手按成績由好到差編為1~25號,再用系統(tǒng)抽樣方法從中選取5人,已知選手甲的成績?yōu)?5分鐘,若甲被選取,求被選取的其余4名選手的成績的平均數(shù);
(2)若從總體中選取一個樣本,使得該樣本的平均水平與總體相同,且樣本的方差不大于7,則稱選取的樣本具有集中代表性,試從總體(25名參賽選手的成績)選取一個具有集中代表性且樣本容量為5的樣本,并求該樣本的方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(Ⅰ)若直線l不經(jīng)過第二象限,求實數(shù)a的取值范圍;
(Ⅱ)若直線l與兩坐標(biāo)軸圍成的三角形面積等于2,求實數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com