已知集合A={3,a2},集合B={0,b,1-a},且A∩B={1},則A∪B=( )
A.{0,1,3}
B.{1,2,4}
C.{0,1,2,3}
D.{0,1,2,3,4}
【答案】分析:由A與B交集的元素為1,得到1屬于A且屬于B,得到a2=1,求出a的值,進而求出b的值,確定出A與B,找出既屬于A又屬于B的元素,即可確定出兩集合的并集.
解答:解:∵A={3,a2},集合B={0,b,1-a},且A∩B={1},
∴a2=1,解得:a=1或a=-1,
當a=1時,1-a=1-1=0,不合題意,舍去;
當a=-1時,1-a=1-(-1)=2,此時b=1,
∴A={3,1},集合B={0,1,2},
則A∪B={0,1,2,3}.
故選C
點評:此題考查了交、并集及其運算,是一道基本題型,熟練掌握交、并集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構成兩個相應的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n.若對于任意的a∈A,總有-a∉A,則稱集合A具有性質P.
(Ⅰ)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質P并對其中具有性質P的集合,寫出相應的集合S和T;
(Ⅱ)對任何具有性質P的集合A,證明:n≤
k(k-1)2

(Ⅲ)判斷m和n的大小關系,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于下列命題:
①已知集合A={正四棱柱},B={長方體},則A∩B=B;
②函數(shù)y=
1
lgx
在(0,+∞)為單調函數(shù);
③在平面直角坐標系內,點M(|a|,|a-3|)與N(cosα,sinα)在直線x+y-2=0的異側;
④若
1
a
<1
,則a<0或a>1;
⑤互為反函數(shù)的兩個不同函數(shù)的圖象若有交點,則交點一定在直線y=x上.其中正確命題的序號為
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x≤a+3},B={x|x<-1或x>5}.
(1)若a=-2,求A∩?RB;
(2)若A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:北京高考真題 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構成兩個相應的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A},其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n,若對于任意的a∈A,總有-aA,則稱集合A具有性質P。
(1)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質P并對其中具有性質P的集合,寫出相應的集合S和T;
(2)對任何具有性質P的集合A,證明: n≤;
(3)判斷m和n的大小關系,并證明你的結論。

查看答案和解析>>

科目:高中數(shù)學 來源:月考題 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構成兩個相應的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n.若對于任意的a∈A,總有﹣aA,則稱集合A具有性質P.
(I)檢驗集合{0,1,2,3}與{﹣1,2,3}是否具有性質P并對其中具有性質P的集合,寫出相應的集合S和T;
(II)對任何具有性質P的集合A,證明: ;
(III)判斷m和n的大小關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案