設(shè)f(x)=xlnx,若,則等于(    )

A.     e2      B. e     C.      D.ln2

 

【答案】

B

【解析】解:因?yàn)閒(x)=xlnx,f’(x)=lnx+1,所以,因此選B

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
a
x
+xlnx
,g(x)=x3-x2-3.
(1)當(dāng)a=2時,求曲線y=f(x)在x=1處的切線方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(3)如果對任意的s,t∈[
1
2
,2]
,都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省模擬題 題型:解答題

設(shè)f(x)=+xlnx,g(x)=x3-x2-3,
(Ⅰ)當(dāng)a=2時,求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(Ⅲ)如果對任意的s,t∈[,2],都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0112 模擬題 題型:解答題

設(shè)f(x)=+xlnx,g(x)=x3-x2-3.
(1)當(dāng)a=2時,求曲線y=f(x)在x=1處的切線方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)- g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(3)如果對任意的s,t∈[,2],都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=xlnx,若f′(x0)=2,則x0等于(    )

A.e2                   B.e                   C.               D.ln2

查看答案和解析>>

同步練習(xí)冊答案