在數(shù)列{an}中,an=2n-1,若一個7行12列的矩陣的第i行第j列的元素aij=ai•aj+ai+aj,(i=1,2,…,7;j=1,2,…,12)則該矩陣元素能取到的不同數(shù)值的個數(shù)為
 
分析:由于該矩陣的第i行第j列的元素cij=ai•aj+ai+aj=(2i-1)(2j-1)+2i-1+2j-1=2i+j-1(i=1,2,…,7;j=1,2,…,12),要使aij=amn(i,m=1,2,…,7;j,n=1,2,…,12).
則滿足2i+j-1=2m+n-1,得到i+j=m+n,由指數(shù)函數(shù)的單調(diào)性可得:當(dāng)i+j≠m+n時,aij≠amn,因此該矩陣元素能取到的不同數(shù)值為i+j的所有不同和,即可得出.
解答:解:該矩陣的第i行第j列的元素cij=ai•aj+ai+aj=(2i-1)(2j-1)+2i-1+2j-1=2i+j-1(i=1,2,…,7;j=1,2,…,12),
當(dāng)且僅當(dāng)i+j=m+n時,aij=amn(i,m=1,2,…,7;j,n=1,2,…,12).
因此該矩陣元素能取到的不同數(shù)值為i+j的所有不同和,其和為2,3,…,19,共18個不同數(shù)值.
故答案為:18.
點(diǎn)評:本題考查了簡單的合情推理,訓(xùn)練了指數(shù)函數(shù)的單調(diào)性,解答的關(guān)鍵是對題意的理解,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案