【題目】已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.
(2)從圓外一點P(x0,y0)向圓引切線PM,M為切點,O為原點,若|PM|=|PO|,求使|PM|最小的P點坐標.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù),例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②函數(shù)f(x)=是單函數(shù);
③若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④在定義域上具有單調性的函數(shù)一定是單函數(shù).
其中的真命題是________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《國務院關于修改〈中華人民共和國個人所得稅法實施條例〉的決定》已于2008年3月1日起施行,個人所得稅稅率表如下:
級數(shù) | 全月應納稅所得額 | 稅率 |
1 | 不超過500元的部分 | 5% |
2 | 超過500至2 000元的部分 | 10% |
3 | 超過2 000元至5 000元的部分 | 15% |
… | … | … |
9 | 超過100 000元的部分 | 45% |
注:本表所示全月應納稅所得額為每月收入額減去2 000元后的余額.
(1)若某人2008年4月份的收入額為4 200元,求該人本月應納稅所得額和應納的稅費;
(2)設個人的月收入額為x元,應納的稅費為y元.當0<x≤3 600時,試寫出y關于x的函數(shù)關系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù)
(1).討論函數(shù)的單調性;
(2).若不等式對任意的恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產某種產品時的能耗y與產品件數(shù)x之間的關系式為y=ax+.且當x=2時,y=100;當x=7時,y=35.且此產品生產件數(shù)不超過20件.
(1)寫出函數(shù)y關于x的解析式;
(2)用列表法表示此函數(shù),并畫出圖象.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地上年度電價為0.8元,年用電量為1億千瓦時.本年度計劃將電價調至0.55元~0.75元之間,經測算,若電價調至元,則本年度新增用電量(億千瓦時)與元成反比例.又當時,.
(1)求與之間的函數(shù)關系式;
(2)若每千瓦時電的成本價為0.3元,則電價調至多少時,本年度電力部門的收益將比上年增加20%?[收益用電量(實際電價-成本價)]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求的值域;
(2)若不等式在上恒成立,求實數(shù)的取值范圍;
(3)當(, )時,函數(shù), 的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓: 過橢圓: ()的短軸端點, , 分別是圓與橢圓上任意兩點,且線段長度的最大值為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作圓的一條切線交橢圓于, 兩點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線在平面直角坐標系下的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系.
(1)求曲線的普通方程及極坐標方程;
(2)直線的極坐標方程是,射線: 與曲線交于點與直線交于點,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com