定義在R上的偶函數(shù)y=f(x)滿足f(x+2)=f(x),且當(dāng)x∈(0,1]時(shí)單調(diào)遞增,則(  )
分析:由已知可得f(-5)=f(5)=f(3)=f(1),f(
5
2
)=f(
1
2
)
,結(jié)合f(x)在(0,1]上單調(diào)遞增即可判斷大小
解答:解:由題意可得f(x+2)=f(x)且f(x)=f(-x)
∴f(-5)=f(5)=f(3)=f(1),f(
5
2
)=f(
1
2
)

又∵1>
1
2
1
3
且f(x)在(0,1]上單調(diào)遞增
∴f(1)>f(
1
2
)>f(
1
3
)即f(-5)>f(
5
2
)>f(
1
3

故選B
點(diǎn)評:本題主要考查了抽象函數(shù)的奇偶性及單調(diào)性、周期性的綜合應(yīng)用,解題的關(guān)鍵是靈活利用性質(zhì)把所要比較的式子轉(zhuǎn)化到同一單調(diào)區(qū)間
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

17、定義在R上的偶函數(shù)y=f(x)滿足:
①對任意x∈R都有f(x+2)=f(x)+f(1)成立;
②f(0)=-1;
③當(dāng)x∈(-1,0)時(shí),都有f(x)<0.
若方程f(x)=0在區(qū)間[a,3]上恰有3個不同實(shí)根,則實(shí)數(shù)a的取值范圍是
(-3,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)滿足:①對x∈R都有f(x+6)=f(x)+f(3);②當(dāng)x1,x2∈[0,3]且x1≠x2時(shí),都有
f(x1)-f(x2)x1-x2
>0
,若方程f(x)=0在區(qū)間[a,8-a]上恰有3個不同實(shí)根,實(shí)數(shù)a的取值范圍是
(-7,-3)
(-7,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)在(-∞,0]上遞增,函數(shù)f(x)的一個零點(diǎn)為-
1
2
,求滿足f(log
1
9
x)≥0的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f (x)滿足f ( x+2 )=-f (x)對所有實(shí)數(shù)x都成立,且在[-2,0]上單調(diào)遞增,a=f(
3
2
),b=f(
7
2
),c=f(log 
1
2
8),則a,b,c的由大到小順序是(用“>”連 結(jié))
 

查看答案和解析>>

同步練習(xí)冊答案