已知命題P:?x>0,x3>0,那么?P是( 。
A、?x≤0,x3≤0
B、?x>0,x3≤0
C、?x>0,x3≤0
D、?x<0,x3≤0
考點:命題的否定
專題:簡易邏輯
分析:直接利用全稱命題的否定是特稱命題寫出結果即可.
解答: 解:因為全稱命題的否定是特稱命題,所以,命題P:?x>0,x3>0,那么?P是?x>0,x3≤0.
故選:C.
點評:本題考查命題的否定特稱命題與全稱命題的否定關系,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列說法正確的是( 。
A、“f(O)=O”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B、“向量a,b,c,若a•b=a•c,則b=c”是真命題
C、函數(shù)f(x)=
1
3
x-㏑x在區(qū)間(
1
e
,1)有零點,在區(qū)間(1,e)無零點
D、“若α=
π
6
,則sinα=
1
2
”的否命題是“若α≠
π
6
,則sinα≠
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)不是奇函數(shù),給定下列4個命題:
①函數(shù)g(x)=f(-x)-f(x)是奇函數(shù);
②?x∈R,f(-x)≠-f(x);
③?x∈R,f(-x)=f(x);
④?x0∈R,f(-x0)≠-f(x0).
其中為真命題的命題是( 。
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的程序框圖中輸出的結果為( 。
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,E為邊AD的中點,AB=1,BC=2,分別以A、D為圓心,1為半徑作圓弧EB、EC(E在線段AD上).由兩圓弧EB、EC及邊BC所圍成的平面圖形繞直線AD旋轉一周,則所形成的幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,3)
b
=(1,m),且
a
b
,那么實數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某城市有大型、中型與小型超市共1500個,它們的個數(shù)之比為1:5:9.為調查超市每日的零售額情況,需通過分層抽樣抽取30個超市進行調查,那么抽取的小型超市個數(shù)為(  )
A、5B、9C、18D、20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體中兩條面對角線的位置關系是( 。
A、平行B、異面
C、相交D、平行、相交、異面都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,若a1=
3
2
,a4=6
,則a10=
 

查看答案和解析>>

同步練習冊答案