橢圓
x2
9
+
y2
4
=1
的焦點(diǎn)F1、F2,點(diǎn)P為其上的動(dòng)點(diǎn),當(dāng)∠F1PF2為鈍角時(shí),點(diǎn)P橫坐標(biāo)的取值范圍是
 
分析:設(shè)p(x,y),根據(jù)橢圓方程求得兩焦點(diǎn)坐標(biāo),根據(jù)∠F1PF2是鈍角推斷出PF21+PF22<F1F22代入p坐標(biāo)求得x和y的不等式關(guān)系,求得x的范圍.
解答:精英家教網(wǎng)解:如圖,
設(shè)p(x,y),則F1(-
5,0
),F2(
5
,0)

且∠F1PF2是鈍角
?P
F
2
1
+P
F
2
2
F1
F
2
2
?(x+
5
)2+y2+(x-
5
)2+y2<20

?x2+5+y2<10
?x2+4(1-
x2
9
)<5

?x2
9
5
?-
3
5
5
<x<
3
5
5

故答案為:-
3
5
<x<
3
5
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì)和解不等式.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2為橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P為橢圓上的一點(diǎn),已知P,F(xiàn)1,F(xiàn)2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,求
|PF1|
|PF2|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且丨PF1丨:丨PF2丨=2:1,則△PF1F2的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
9
+
y2
4
=1
內(nèi)有一點(diǎn)P(2,1),過點(diǎn)P作直線交橢圓于A、B兩點(diǎn).
(1)若弦AB恰好被點(diǎn)P平分,求直線AB的方程;
(2)當(dāng)原點(diǎn)O到直線AB的距離取最大值時(shí),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(x,y)為橢圓
x2
9
+
y2
4
=1
上的動(dòng)點(diǎn),A(a,0)(0<a<3)為定點(diǎn),已知|AP|的最小值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),若△PF1F2是直角三角形,且|PF1|>|PF2|,則
|PF1|
|PF2|
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案