2.已知數(shù)列{an}的前n項和Sn=n2-2n-1,則a1+a17=(  )
A.31B.29C.30D.398

分析 由數(shù)列{an}的前n項和Sn=n2-2n-1,a1+a17=S1+(S17-S16),能求出結(jié)果.

解答 解:∵數(shù)列{an}的前n項和Sn=n2-2n-1,
∴a1+a17=S1+(S17-S16
=1-2-1+(289-34-1)-(256-32-1)
=29.
故選:B.

點評 本題考查數(shù)列中兩項和的求法,解題時要注意公式an=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$的合理運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點P是邊長為2的等邊三角形內(nèi)一點,它到三邊的距離分別為x、y、z,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列命題中:
①命題P:?x∈R使得2x2-1<0”,則¬P是假命題;
②“若x+y=0,則x,y互為相反數(shù)”的逆命題為假命題;
③?x∈R,若x>210,則x>2100”;
④命題“若p,則q”的逆否命題是“若¬q則¬p”,
其中真命題的序號是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y都是正數(shù),且$\frac{2}{x}+\frac{1}{y}$=1,則x+y的最小值等于(  )
A.6B.$4\sqrt{2}$C.$3+2\sqrt{2}$D.$4+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.己知f(x)=loga(ax-1)(a>1).求:
(1)函數(shù)f(x)的定義城;
(2)求使f(2x)=f-1(x)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.拋物線y2=2x的焦點到準(zhǔn)線的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C:x2+y2=4,直線l:x-y+1=0與圓C交于A,B兩點,點O為坐標(biāo)原點,求△AOB的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,且${S_n}={n^2}-8n$
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最小值及其相應(yīng)的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圓(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$經(jīng)過橢圓C的三個頂點,則橢圓C的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$或$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊答案