如圖,已知四棱錐P-ABCD的底面是矩形,側面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中點,AC與BD的交點為M.
(1)求證:PC∥平面EBD;
(2)求證:BE⊥平面AED.
考點:直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關系與距離
分析:(1)連結EM,由三角形中位線定理能證明PC∥平面EBD.
(2)由已知條件得AD⊥平面PAB,從而得到AD⊥BE,由等邊三角形性質得BE⊥AE,由此能證明BE⊥平面AED.
解答: (1)證明:連結EM,∵四邊形ABCD是矩形,∴M為AC的中點,
∵E是PA的中點,∴EM是△PAC的中位線,
∴EM∥PC,
∵EM?平面EBD,PC不包含于平面EBD,
∴PC∥平面EBD.
(2)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,
而AD⊥AB,∴AD⊥平面PAB,
∵BE?平面PAB,∴AD⊥BE,
又∵△PAB是等邊三角形,且E是PA的中點,
∴BE⊥AE,
又AE∩AD=A,
∴BE⊥平面AED.
點評:本題考查直線與平面平行的證明,考查直線與平面垂直的證明,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=|x+1|+|x-2|
(Ⅰ)求f(x)>5的解集;
(Ⅱ)若關于x的不等式f(x)<m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinωx-2sin2
ωx
2
+m(ω>0)的最小正周期為3π,且當x∈[0,π]時,函數(shù)f(x)的最小值為0.
(1)求函數(shù)f(x)的表達式;
(2)在△ABC中,角角A、B、C所對的邊分別為a、b、c,若f(c)=1且a+b=10,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知PA⊥矩形ABCD所在的平面,M、N分別為AB、PC的中點,∠PDA=45°,AB=2,AD=1.
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求證:平面PMC⊥平面PCD;
(Ⅲ)求三棱錐M-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(Ⅰ)若P是A1B1的中點,求證:DP∥平面ACB1平行;
(Ⅱ)求證:平面ACC1A1⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=BC=BB1=2.AB=2
2
,點D是AB的中點.
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求證:AC1∥平面CDB1
(Ⅲ)求CB1與平面AA1B1B所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)m為何值時,復數(shù)z=(m2+5m+6)+(m2-2m-15)i 對應的點在:
(1)x軸上方;
(2)直線x+y+5=0上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD是邊長為2的菱形,PA⊥平面ABCD,PA=2,∠ABC=60°,E、F分別為BC、PD的中點.
(1)證明:AE⊥PD;
(2)求EF與平面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程為
x=2+t
y=
3
t
(t為參數(shù)),曲線C的極坐標方程為:ρ2cos2θ=1.
(1)求曲線C的普通方程;
(2)求直線l被曲線C截得的弦長.

查看答案和解析>>

同步練習冊答案