12.已知p:x2-2x-3<0,若|x-1|<a(a>0)是p的一個必要不充分條件,求a的取值范圍.

分析 根據(jù)充分條件和必要條件的定義結合不等式之間的關系進行求解即可.

解答 解:p:x2-2x-3<0?-1<x<3,
|x-1|<a?1-a<x<1+a(a>0).
依題意,得{x|-1<x<3}?{x|1-a<x<1+a}(a>0),
∴$\left\{\begin{array}{l}{1-a<-1}\\{1+a≥3}\end{array}\right.$或$\left\{\begin{array}{l}{1-a≤-1}\\{1+a>3}\end{array}\right.$
解得a>2.則a的取值范圍是(2,+∞).

點評 本題主要考查充分條件和必要條件的應用,根據(jù)不等式的關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知$\frac{\overline{z}}{1+i}$=2+i,求z.
(2)已知m∈R,復數(shù)z=$\frac{{m({m+2})}}{m-1}$+(m2+2m-3)i,當m為何值時z是虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=$\frac{1}{x}$-x3的圖象關于( 。
A.x軸對稱B.y軸對稱C.直線y=x對稱D.坐標原點對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若直線x+y=m與曲線$y=\sqrt{9-{x^2}}$恰有兩個公共點,則m的取值范圍是[3,$3\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.集合A={x∈R|ax2-2x+2=0}集合B={y∈R|y2-3y+2=0},如果A∪B=B求實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c且B=2A,則$\frac{c}{b-a}$的取值范圍是( 。
A.(0,3)B.(1,2)C.(2,3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知關于x的方程為x2+mx+n2=0,
(Ⅰ)若m=1,n∈[-1,1],求方程有實數(shù)根的概率.
(Ⅱ)若m∈[-1,1],n∈[-1,1],求方程有實數(shù)根的概率.
(Ⅲ)在區(qū)間[0,1]上任取兩個數(shù)m和n,利用隨機數(shù)模擬的方法近似計算關于x的方程x2+mx+n2=0有實數(shù)根的概率,請寫出你的試驗方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知f(x)=$\frac{1-x}{1+x}$.
(1)若a∈R,且a≠0,求f(a-1);
(2)證明:f($\frac{1}{x}$)=-f(x)(x≠-1且x≠0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}1,x≥0\\-2,x<0\end{array}$,若x1,x2均滿足不等式x+(x-1)f(x+1)≤5,則x1-x2的最大值為6.

查看答案和解析>>

同步練習冊答案