某城市要建成宜商、宜居的國際化新城,該城市的東城區(qū)、西城區(qū)分別引進8個廠家,現(xiàn)對兩個區(qū)域的16個廠家進行評估,綜合得分情況如莖葉圖所示.
(Ⅰ)根據(jù)莖葉圖判斷哪個區(qū)域廠家的平均分較高;
(Ⅱ)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個區(qū)域各選一個優(yōu)秀廠家,求得分差距不超過5的概率.
考點:莖葉圖,古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(Ⅰ)根據(jù)莖葉圖求出東城區(qū)與西城區(qū)的平均分即可得出結(jié)論;
(Ⅱ)求出從兩個區(qū)域各選一個優(yōu)秀廠家的所有基本事件數(shù),再求出滿足得分差距不超過5的事件數(shù),即可求出概率.
解答: 解:(Ⅰ)根據(jù)莖葉圖知,東城區(qū)的平均分為
.
X
=
78+79+79+88+88+89+93+94
8
=86,
西城區(qū)的平均分為
.
X西
=
72+79+81+83+84+85+94+94
8
=84,
∴東城區(qū)的平均分較高;
(Ⅱ)從兩個區(qū)域各選一個優(yōu)秀廠家,
所有的基本事件數(shù)為5×3=15種,
滿足得分差距不超過5的事件(88,85)(88,85)(89,85)(89,94)(89,94)(93,94)(93,94)(94,94)(94,94)共9種,
∴滿足條件的概率為P=
9
15
=
3
5
點評:本題通過莖葉圖考查了求平均數(shù)以及求古典概型的概率問題,解題時應(yīng)列出基本事件數(shù),以便求出概率,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足zi=1+3i,則z在復(fù)平面內(nèi)所對應(yīng)的點的坐標(biāo)是( 。
A、(1,-3)
B、(-1,3)
C、(-3,1)
D、(3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)的一種特色水果上市時間僅能持續(xù)5個月,預(yù)測上市初期和后期會因供不應(yīng)求使價格呈連續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求使價格下跌.經(jīng)市場分析,價格模擬函數(shù)為以下三個函數(shù)中的一個:①f(x)=p•qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p.(以上三式中p,q均為常數(shù),且q>1)(注:函數(shù)的定義域是[0,5]).其中x=0表示4月1日,x=1表示5月1日,…,依此類推.
(Ⅰ)請判斷以上哪個價格模擬函數(shù)能準(zhǔn)確模擬價格變化走勢,為什么?
(Ⅱ)若該果品4月1日投入市場的初始價格定為6元,且接下來的一個月價格持續(xù)上漲,并在5 月1日達到了一個最高峰,求出所選函數(shù)f(x)的解析式;
(Ⅲ)在(Ⅱ)的條件下,為保護果農(nóng)的收益,打算在價格下跌期間積極拓寬境外銷售,且銷售價格為該果品上市期間最低價格的2倍,請你預(yù)測該果品在哪幾個月內(nèi)價格下跌及境外銷售的價格.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差為d的等差數(shù)列,它的前n項和為Sn,S4=2S2+4.
(Ⅰ)求公差d的值;
(Ⅱ)若對任意的n∈N*,都有Sn≥S8成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4lnx+x2-ax(a∈R).
(Ⅰ)當(dāng)a=6時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2,且x1∈(0,1],求證:f(x1)-f(x2)≥3-4ln2;
(Ⅲ)設(shè)g(x)=f(x)+2ln
ax+2
6x2
,對于任意a∈(2,4)時,總存在x∈[
3
2
,2],使g(x)>k(4-a2)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
2
+y2
=1右焦點為F2,過F2的直線l交橢圓于A,B兩點.若橢圓上一點P可使
OA
+
OB
+
OP
=
0
,求P點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,g(x)=ln(x+m).直線l:y=kx+b經(jīng)過點P(-1,0)且與曲線y=f(x)相切.
(1)求切線l的方程.
(2)若關(guān)于x的不等式kx+b≥g(x)恒成立,求實數(shù)m的最大值.
(3)設(shè)F(x)=f(x)-g(x),若函數(shù)F(x)有唯一的零點x0,求證-1<x0<-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(-1,
3
),動點P按逆時針方向沿著單位圓從P0(1,0)處開始運動(t=0秒),且每秒運動的弧長為
π
5
弧度,在t秒內(nèi)(t>0)到達點P.記函數(shù)f(t)=
OA
OP
,向量
OQ
=
OA
+
OP
,關(guān)于f(t)有以下結(jié)論:
①f(t)=-
3
sin
π
5
t+cos
π
5
t;②f(t)=2sin(
π
5
t-
π
6
);③Q點的軌跡是以A為圓心,半徑為1的圓;
④當(dāng)f(t)第一次取得最大值時,需要的時間是t=
3
10
秒;⑤1≤|
OQ
|≤
3
其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式ax+b>1(a,b∈R+)的解集為(1,+∞),那么
1
a
+
1
b
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案