【題目】某地區(qū)為了了解本年度數(shù)學競賽成績情況,從中隨機抽取了個學生的分數(shù)作為樣本進行統(tǒng)計,按照,,,的分組作出頻率分布直方圖如圖所示,已知得分在的頻數(shù)為20,且分數(shù)在70分及以上的頻數(shù)為27.

(1)求樣本容量以及,的值;

(2)在選取的樣本中,從競賽成績在80分以上(80)的學生中隨機抽取2名學生,求所抽取的2名學生中恰有一人得分在內的概率.

【答案】(1),,(2)

【解析】

(1)根據(jù)頻率分布直方圖以及得分在的頻數(shù)為20求出值,再根據(jù)分數(shù)在70分及以上的頻數(shù)為27,求出值,然后利用頻率分布直方圖面積和為1,求出即可.

(2)(1)可知,得分在的頻數(shù)為5,得分在的頻數(shù)為2,根據(jù)古典概型,求解即可.

(1)由頻率分布直方圖可知,得分在的頻率為,即,

則得分在的頻數(shù)為

又因為分數(shù)在70分及以上的頻數(shù)為27

所以得分在的頻數(shù)為

由題意可知

所以

(2)(1)可知,得分在的頻數(shù)為5,得分在的頻數(shù)為2

所抽取的2名學生中恰有一人得分在為事件

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中藥種植基地有兩處種植區(qū)的藥材需在下周一、下周二兩天內采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘.由于下雨會影響藥材品質,基地收益如下表所示:

周一

無雨

無雨

有雨

有雨

周二

無雨

有雨

無雨

有雨

收益

萬元

萬元

萬元

萬元

若基地額外聘請工人,可在周一當天完成全部采摘任務.無雨時收益為萬元;有雨時,收益為萬元.額外聘請工人的成本為萬元.

已知下周一和下周二有雨的概率相同,兩天是否下雨互不影響,基地收益為萬元的概率為.

(Ⅰ)若不額外聘請工人,寫出基地收益的分布列及基地的預期收益;

(Ⅱ)該基地是否應該外聘工人,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出如下四個命題:

的充分而不必要條件;

②命題,則函數(shù)有一個零點的逆命題為真命題;

③若的必要條件,則的充分條件;

④在中,的既不充分也不必要條件.

其中正確的命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為實數(shù),,.

1)當函數(shù)的圖象過點,且方程有且只有一個根,求的表達式;

2)在(1)的條件下,當時,是單調函數(shù),求實數(shù)的取值范圍;

3)若,當,,且函數(shù)為偶函數(shù)時,試判斷能否大于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為,以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2cosθ.

1)若曲線C1方程中的參數(shù)是α,且C1C2有且只有一個公共點,求C1的普通方程;

2)已知點A0,1),若曲線C1方程中的參數(shù)是t0απ,且C1C2相交于P,Q兩個不同點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域為,若存在閉區(qū)間,使得函數(shù)滿足

上是單調函數(shù); 上的值域是,則稱區(qū)間是函數(shù) 和諧區(qū)間,

下列結論錯誤的是

A.函數(shù) 存在 和諧區(qū)間

B.函數(shù) 存在 和諧區(qū)間

C.函數(shù) 存在 和諧區(qū)間

D.函數(shù) 存在 和諧區(qū)間

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形的中心為,一邊所在直線的方程為,求其他三邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,則方程恰有2個不同的實根,實數(shù)取值范圍__________________.

查看答案和解析>>

同步練習冊答案