f(x)滿足f(x+5)=f(x)對一切實數(shù)x都成立,且當x∈[0,5)時,f(x)=x2-x,則f(2008)=________.

6
分析:由f(x)滿足f(x+5)=f(x)對一切實數(shù)x都成立,能得到f(2008)=f(3),再由當x∈[0,5)時,f(x)=x2-x,
能求出f(2008)的值.
解答:∵f(x)滿足f(x+5)=f(x)對一切實數(shù)x都成立,
∴f(2008)=f(5×401+3)
=f(3),
∵當x∈[0,5)時,f(x)=x2-x,
∴f(2008)=f(3)=9-3=6.
故答案為:6.
點評:本題考查函數(shù)的周期性,是基礎(chǔ)題.解題時要認真審題,注意函數(shù)的周期性在解題中的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2
4+2b-b2
x,g(x)=-
1-(x-a)2
,(a,b∈R)
(Ⅰ)當b=0時,若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對(a,b):當a是整數(shù)時,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足條件:當x1,x2∈[-1,1]時,有|f(x1)-f(x2)|≤3|x1-x2|成立,則稱f(x)∈Ω.對于函數(shù)g(x)=x3,h(x)=
1
x+2
,有( 。
A、g(x)∈Ω且h(x)∉Ω
B、g(x)∉Ω且h(x)∈Ω
C、g(x)∈Ω且h(x)∈Ω
D、g(x)∉Ω且h(x)∉Ω

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)g(x)滿足:當x≠0時,xg′(x)<0(其中g(shù)′(x)為函數(shù)g(x)的導(dǎo)函數(shù));定義在R上的奇函數(shù)f(x)滿足:f(x+2)=-f(x),在區(qū)間[0,1]上為單調(diào)遞增函數(shù),且函數(shù)y=f(x)在x=-5處的切線方程為y=-6.若關(guān)于x的不等式g[f(x)]≥g(a2-a+4)對x∈[6,10]恒成立,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域為數(shù)學(xué)公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案