函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù),下列四個結(jié)論:
①函數(shù)f(x)=tanx(x≠kπ+
π2
,k∈Z)是單函數(shù);
②指數(shù)函數(shù)f(x)=2x(x∈R)是單函數(shù);
③若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù).
上述四個結(jié)論中正確的有
②③④
②③④
.(寫出所有正確結(jié)論的序號)
分析:由題意單函數(shù)的實質(zhì)是一對一的映射,而單調(diào)的函數(shù)也是一對一的映射,據(jù)此可逐個判斷.
解答:解:①函數(shù)f(x)=tanx(x≠kπ+
π
2
,k∈Z)不是單函數(shù),例如f(
π
6
)=f(
6
),顯然不會有
π
6
6
相等,故為假命題;
②指數(shù)函數(shù)f(x)=2x(x∈R)是單函數(shù),因為指數(shù)函數(shù)f(x)=2x(x∈R)是實數(shù)上的單調(diào)函數(shù),也是一一映射函數(shù),故為真命題;
③若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2)為真,
可用反證法證明:假設(shè)f(x1)=f(x2),則按定義應(yīng)有x1=x2,與已知中的x1≠x2矛盾;
④在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù)為真,因為單函數(shù)的實質(zhì)是一對一的映射,而單調(diào)的函數(shù)也是,故為真.
故答案為:②③④.
點評:本題為新定義,準(zhǔn)確理解單函數(shù)并把它跟已知函數(shù)的性質(zhì)聯(lián)系起來是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為{x|x≠0},且滿足對于定義域內(nèi)任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判斷f(x)的奇偶性并證明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函數(shù),解關(guān)于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的定義域是[0,1),則F(x)=f[log 
12
(3-x)
]的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的定義域為(-1,1),它在定義域內(nèi)既是奇函數(shù)又是增函數(shù),且f(a-3)+f(4-2a)<0,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的定義域為[-1,2],則函數(shù)
f(x+2)
x
的定義域為( 。
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步練習(xí)冊答案