16.已知cos($\frac{π}{2}$+α)=$\frac{1}{3}$.求值:$\frac{sin(\frac{π}{2}+α)cos(\frac{π}{2}-α)}{cos(π+α)}$+$\frac{sin(π-α)cos(\frac{3π}{2}+α)}{sin(π+α)}$.

分析 由已知結合誘導公式,可得sinα=-$\frac{1}{3}$,再用誘導公式,化簡式子,可得答案.

解答 解:∵cos($\frac{π}{2}$+α)=-sinα=$\frac{1}{3}$.
∴sinα=-$\frac{1}{3}$.
∴$\frac{sin(\frac{π}{2}+α)cos(\frac{π}{2}-α)}{cos(π+α)}$+$\frac{sin(π-α)cos(\frac{3π}{2}+α)}{sin(π+α)}$
=$\frac{cosα•sinα}{-cosα}$+$\frac{sinα•sinα}{-sinα}$
=-sinα-sinα
=-2sinα
=$\frac{2}{3}$.

點評 本題考查的知識點是三角函數(shù)的化簡求值,誘導公式的應用,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.化簡:sin(-α)cos(π+α)tan(π-α)=-sin2α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.“l(fā)nx<1”是“x<e”的( 。
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知f(x)=1og2$\frac{1-x}{1+x}$.
(1)判斷f(x)的單調性;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1-{a}^{x}}{1+{a}^{x}}$,(a>0,a≠1).
(1)判斷函數(shù)f(x)的奇偶性;
(2)a=2時,函數(shù)g(x)和f(x)的圖象關于直線x=1對稱,求函數(shù)g(x)的解析式;進一步研究函數(shù)G(x)=|g(x)|的圖象有什么性質.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知tanα=3,計算:
(1)5cosα+3sinα;
(2)sinαcosα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.用誘導公式求下列三角函數(shù)值(可用計算器):
(1)cos$\frac{65}{6}$π;
(2)sin(-$\frac{31}{4}$π);
(3)sin670°39′;
(4)tan(-$\frac{26π}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.定積分$\int_0^1{({2x-{e^x}})dx}$的值為2-e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知拋物線方程為y2=8x,
(1)直線l過拋物線的焦點F,且垂直于x軸,l與拋物線交于A,B兩點,求AB的長度.
(2)直線l1過拋物線的焦點F,且傾斜角為45°,直線l1與拋物線相交于C,D兩點,O為原點.求△OCD的面積.

查看答案和解析>>

同步練習冊答案