1.已知在等比數(shù)列{an}中,公比q≠1,a1,a3,a5是等差數(shù)列{bn}中的b2,b4,b12,則q=±2.

分析 由題意可得:${a}_{3}^{2}={a}_{1}{a}_{5}$,$(_{1}+3d)^{2}$=(b1+d)(b1+11d),化簡代入q2=$\frac{{a}_{3}}{{a}_{1}}$,即可得出.

解答 解:∵在等比數(shù)列{an}中,公比q≠1,a1,a3,a5是等差數(shù)列{bn}中的b2,b4,b12,
設等差數(shù)列{bn}的公差為d,
∴${a}_{3}^{2}={a}_{1}{a}_{5}$,$(_{1}+3d)^{2}$=(b1+d)(b1+11d),化為:d=-3b1
∴q2=$\frac{{a}_{3}}{{a}_{1}}$=$\frac{_{1}+3d}{_{1}+d}$=$\frac{-8_{1}}{-2_{1}}$=4,
∴q=±2.
故答案為:±2.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.如果函數(shù)f(x)=x2-ax-3在區(qū)間(-∞,3]上單調遞減,則實數(shù)a滿足的條件使(  )
A.a≤6B.a≥6C.a≥3D.a≥-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E為BC上一點且BE=$\frac{2}{3}$BC,PB⊥AE.
(1)求證:AB⊥PE;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.圓x2+y2+Dx+Ey-4=0的圓心為(-1,2),則圓的半徑為( 。
A.6B.9C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$
(1)求sinx•cosx的值
(2)求sinx-cosx的值
(3)求$\frac{1}{co{s}^{2}x-si{n}^{2}x}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(文)試卷(解析版) 題型:解答題

已知函數(shù).

(1)用函數(shù)單調性的定義證明:函數(shù)在區(qū)間上為增函數(shù);

(2)若,當時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(文)試卷(解析版) 題型:選擇題

已知為常數(shù),函數(shù)內有兩個極值點,則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(理)試卷(解析版) 題型:填空題

若函數(shù)上單調遞減,則實數(shù)的取值范圍是 .

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年河北正定中學高二上月考一數(shù)學(理)試卷(解析版) 題型:解答題

執(zhí)行如圖所示的程序框圖.

(1)若輸入的,,求輸出的的值;

(2)若輸入的,輸出的,求輸入的)的值.

查看答案和解析>>

同步練習冊答案