如圖4,在底面是直角梯形的四棱錐中,,,求面與面所成二面角的正切值.
與面所成二面角的正切值為
建立如圖所示的空間直角坐標系,


延長軸于點,易得,
于點,連結,
即為面與面所成二面角的平面角.
又由于,得,
那么,
從而,
因此
故面與面所成二面角的正切值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分) 如圖,在三棱錐中,,點分別是的中點,底面
(1)求證:平面;
(2)當時,求直線與平面所成角的正弦值;
(3)當為何值時,在平面內(nèi)的射影恰好為的重心.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知的直徑AB=3,點C為上異于A,B的一點,平面ABC,且VC=2,點M為線段VB的中點.
(1)求證:平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,為矩形,平面平面.
求證:

為何值時,四棱錐的體積最大?并求此時平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是邊長為的正方形ABCD的中心,點E、F分別是AD、BC的中點,沿對角線AC把正方形ABCD折成直二面角D-AC-B;
(Ⅰ)求∠EOF的大小;
(Ⅱ)求二面角E-OF-A的余弦值;
(Ⅲ)求點D到面EOF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,是正三角形,,D的中點,二面角為120,,.取AC的中點O為坐標原點建立空間直角坐標系,如圖所示,BDz軸于點E.
(I)求BD、P三點的坐標;
(II)求異面直線ABPC所成的角;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在長方體OABC-OABC中,|OA|=2,|AB|=3,|AA|=2,E是BC的中點。

(1)求直線AO與BE所成角的大。
(2)作OD⊥AC于D。求點O到點D的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.
(1)試用向量方法證明E、F、G、H四點共面;
(2)試判斷平面EFGH與平面ABCD的位置關系,并用向量方法證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以下四組向量中,互相平行的是(     ).
(1) ,;       (2) ,;
(3),;  (4),
A.(1) (2)B.(2) (3)C. (2) (4)D.(1) (3)

查看答案和解析>>

同步練習冊答案