設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x,(x∈R),其中m>0
(Ⅰ)當(dāng)m=1時(shí),曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅲ)已知方程f(x)=0有三個(gè)互不相同的根0,x1,x2,且x1<x2.若對(duì)任意的
x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:四川省成都外國(guó)語(yǔ)學(xué)校2011-2012學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:044
設(shè)函數(shù)f(x)=loga(x-3a)(a>0且a≠1),當(dāng)點(diǎn)P(x,y)是函數(shù)y=f(x)的圖象上的點(diǎn)時(shí),點(diǎn)Q(x-2a,-y)是函數(shù)y=g(x)圖象上的點(diǎn).
①寫出函數(shù)y=g(x)的解析式;
②若x∈[a+2,a+3]時(shí),恒有|f(x)-g(x)|≤1,試確定a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(13) 題型:013
(理)設(shè)函數(shù)f(x)=sin(ωx+)-1(ω>0)的導(dǎo)數(shù)(x)最大值為3,則f(x)的圖像的一條對(duì)稱軸的方程是
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:陜西省西安市第一中學(xué)2012屆高三上學(xué)期期中考試數(shù)學(xué)理科試題 題型:022
設(shè)函數(shù)f(x)=(x>0),觀察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,……根據(jù)以上事實(shí),由歸納推理可得:當(dāng)n∈N+且n≥2時(shí),fn(x)=f(fn-1(x))=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:天利38套《2008全國(guó)各省市高考模擬試題匯編(大綱版)》、數(shù)學(xué)文 大綱版 題型:044
已知函數(shù)f(x)=x3+bx2+cx+d(b、c、d∈R且都為常數(shù))的導(dǎo)函數(shù)為,且f(1)=7,設(shè)F(x)=f(x)-ax2(a∈R).
(Ⅰ)當(dāng)a<2時(shí),求F(x)的極小值;
(Ⅱ)若對(duì)任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范圍并證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:寧夏省銀川一中2010屆高三年級(jí)第一次月考測(cè)試數(shù)學(xué)試卷(理) 題型:044
設(shè)函數(shù)f(x)=ax+(a,b為常數(shù)),且方程f(x)=有兩個(gè)實(shí)根為x1=-1,x2=2.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com