16.命題p:三角形是等邊三角形;命題q:三角形是等腰三角形.則p是q( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由等邊三角形一定是等腰三角形,反之不成立,即可判斷出結(jié)論.

解答 解:∵等邊三角形一定是等腰三角形,反之不成立,
∴p是q的充分不必要條件.
故選:A.

點(diǎn)評 本題考查了簡易邏輯的判定方法、等邊三角形與等腰三角形的關(guān)系,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(6,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.復(fù)數(shù)z=$\frac{6+8i}{(4+3i)(1+i)}$,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|-2<x<0},B={x|y=$\sqrt{x+1}$}
(1)求(∁RA)∩B;
(2)若集合C={x|a<x<2a+1},且C⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)是定義在(-∞,+∞)上的奇函數(shù),若對于任意的實(shí)數(shù)x>0,都有$f(x+2)=-\frac{1}{f(x)}$,且當(dāng)x∈[0,2)時(shí)f(x)=log2(x+1),則f(2 015)+f(2 016)的值為( 。
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知兩點(diǎn)F1(-6,0)、F2(6,0),點(diǎn)P為橢圓上任意一點(diǎn),|PF1|+|PF2|=20
(1)求以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;
(2)求出橢圓的長軸的長,短軸長,頂點(diǎn)的坐標(biāo),離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.(log23)×(log32)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}中,a1=1,且a2+a6=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足:$\frac{_{1}}{2}$+$\frac{_{2}}{{2}^{2}}$+$\frac{_{3}}{{2}^{3}}$+…+$\frac{_{n}}{{2}^{n}}$=an+n2+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知平面向量$|{\overrightarrow α}|=|{\overrightarrow β}|=\sqrt{3}$且$\overrightarrow α$與 $\overrightarrow β-\overrightarrow α$的夾角為150°,則$|{t\overrightarrow α+\frac{1-t}{2}\overrightarrow β}|$(t∈R)的取值范圍是[$\frac{3\sqrt{7}}{14}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案