5.已知中心在坐標原點的橢圓C,F(xiàn)1,F(xiàn)2 分別為橢圓的左、右焦點,長軸長為6,離心率為$\frac{{\sqrt{5}}}{3}$
(1)求橢圓C 的標準方程;
(2)已知點P在橢圓C 上,且PF1=4,求點P到右準線的距離.

分析 (1)由已知可得a,再由離心率求得c,結合隱含條件求得b,則橢圓方程可求;
(2)由題意定義結合已知求得PF2,再由橢圓的第二定義可得點P到右準線的距離.

解答 解:(1)根據(jù)題意:$\left\{\begin{array}{l}{2a=6}\\{\frac{c}{a}=\frac{\sqrt{5}}{3}}\end{array}\right.$,解得$a=3,c=\sqrt{5}$,
∴b2=a2-c2=4,
∴橢圓C的標準方程為$\frac{x^2}{9}+\frac{y^2}{4}=1$;
(2)由橢圓的定義得:PF1+PF2=6,可得PF2=2,
設點P到右準線的距離為d,根據(jù)第二定義,得$\frac{2}xfhv11t=\frac{{\sqrt{5}}}{3}$,
解得:$d=\frac{6}{5}\sqrt{5}$.

點評 本題考查橢圓的簡單性質(zhì),考查了橢圓定義的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tsinφ}\\{y=1+tcosφ}\end{array}\right.$(t為參數(shù),0<φ<π,曲線C的極坐標方程為ρcos2θ=4sinθ.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A,B兩點,當φ變化時,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知橢圓$\frac{y^2}{5}+{x^2}=1$與拋物線x2=ay有相同的焦點F,O為原點,點P是拋物線準線上一動點,點A在拋物線上,且|AF|=4,則|PA|+|PO|的最小值為2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在二分法求方程f(x)=0在[0,4]上的近似解時,最多經(jīng)過12次計算精確度可以達到0.001.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知命題p:?x∈[0,2π],sinx≤1,則( 。
A.¬p:?x∈[0,2π],sinx≥1B.¬p:?x∈[-2π,0],sinx>1
C.¬p:?x∈[0,2π],sinx>1D.¬p:?x∈[-2π,0],sinx>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)$f(x)=Msin(ωx+φ)(M>0,|φ|<\frac{π}{2})$的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,若(2a-c)cosB=bcosC,求$f(\frac{A}{2})$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.數(shù)列{an}滿足a1=1,nan+1=(n+1)an+(n+1)n(n∈N+),
(1)令cn=$\frac{a_n}{n}$,證明{cn}是等差數(shù)列,并求an;
(2)令bn=$\frac{1}{{\sqrt{a_n}\sqrt{{a_{n+1}}}}}$,求數(shù)列{bn}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知圓C:x2+y2+8x+12=0,若直線y=kx-2與圓C至少有一個公共點,則實數(shù)k的取值范圍為$[{-\frac{4}{3},0}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖所示的程序的輸出結果為S=1320,則判斷框中應填( 。
A.i≥9B.i≤9C.i≤10D.i≥10

查看答案和解析>>

同步練習冊答案