若a=(1,5,-1),b(-2,3,5).

(1)若(ka+b)∥(a-3b),求k.

(2)若(ka+b)⊥(a-3b),求k.

分析:利用向量的坐標運算及向量共線和垂直的充要條件解題.

解:(1)ka+b=(k-2,5k+3,-k+5),

a-3b=(1+3×2,5-3×3,-1-3×5)=(7,-4,-16).

∵(ka+b)∥(a-3b),

(2)∵(ka+b)⊥(a-3b),

∴(k-2)×7+(5k+3)×(-4)+(-k+5)×(-16)=0.

解得k=.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2+2bx+4c(a,b,c∈R)
(1)若a+c=0,f(x)在[-2,2]上的最大值為
2
3
,最小值為-
1
2
,求證:|
b
a
|≤2

(2)當b=4,c=
3
4
時,對于給定的負數(shù)a,有一個最大的正數(shù)m(a),使得x∈[0,m(a)]時都有|f(x)|≤5,問a為何值時,m(a)最大,并求這個最大值m(a),證明你的結(jié)論.
(3)若f(x)同時滿足下列條件:①a>0;②當|x|≤2時,有|f(x)|≤2;③當|x|≤1時,f(x)最大值為2,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+
xx-1
(x>1)
,若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),
(1)求f(x)的最小值;
(2)求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(1,2),
b
=(-3,1)
2
a
-
b
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕頭一模)數(shù)列{an}的前n項和為Sn,存在常數(shù)A,B,C,使得an+Sn=An2+Bn+C對任意正整數(shù)n都成立.
(1)若A=-
1
2
,B=-
3
2
,C=1,設bn=an+n,求證:數(shù)列{bn}是等比數(shù)列;
(2)在(1)的條件下,cn=(2n+1)bn,數(shù)列{cn}的前n項和為Tn,證明:Tn<5;
(3)若C=0,{an}是首項為1的等差數(shù)列,若λ+n≤
n
i=1
1+
2
a
2
i
+
1
a
2
i+1
對任意的正整數(shù)n都成立,求實數(shù)λ的取值范圍(注:
n
i=1
xi
=x1+x2+…+xn

查看答案和解析>>

同步練習冊答案