精英家教網 > 高中數學 > 題目詳情
已知分別是橢圓的左右焦點,過垂直與軸的直線交橢圓于兩點,若是銳角三角形,則橢圓離心率的范圍是(   )
A.B.C.D.
C

試題分析:為銳角三角形,只需保證為銳角即可。根據橢圓的對稱性,只需保證即可,而,即,整理得,解得,又因為橢圓的離心率小于,故選C.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的左右焦點分別為,且經過點,為橢圓上的動點,以為圓心,為半徑作圓.
(1)求橢圓的方程;
(2)若圓軸有兩個交點,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:的離心率等于,點P在橢圓上。
(1)求橢圓的方程;
(2)設橢圓的左右頂點分別為,過點的動直線與橢圓相交于兩點,是否存在定直線,使得的交點總在直線上?若存在,求出一個滿足條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓的左、右焦點分別為F1(-1,0),F2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點.
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,為坐標原點,求證:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知<4,則曲線有(      )
A.相同的準線B.相同的焦點C.相同的離心率D.相同的長軸

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線與橢圓相交于不同的兩點,試問在軸上是否存在點,使是與無關的常數?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知得頂點分別是離心率為的圓錐曲線的焦點,頂點在該曲線上,一同學已正確地推得,當時有 ,類似地,當時,有               .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知直線所經過的定點恰好是橢圓的一個焦點,且橢圓上的點到點的最大距離為8.則橢圓的標準方程為       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設e是橢圓=1的離心率,且e∈(,1),則實數k的取值范圍是 (  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

同步練習冊答案