學(xué)校操場邊有一條小溝,溝沿是兩條長150米的平行線段,溝寬為2米,,與溝沿垂直的平面與溝的交線是一段拋物線,拋物線的頂點為,對稱軸與地面垂直,溝深2米,溝中水深1米.
(Ⅰ)求水面寬;
(Ⅱ)如圖1所示形狀的幾何體稱為柱體,已知柱體的體積為底面積乘以高,求溝中的水有多少立方米?
(Ⅲ)現(xiàn)在學(xué)校要把這條水溝改挖(不準填土)成截面為等腰梯形的溝,使溝的底面與地面平行,溝深不變,兩腰分別與拋物線相切(如圖2),問改挖后的溝底寬為多少米時,所挖的土最少?
(Ⅰ);(Ⅱ);(Ⅲ);
【解析】
試題分析:(Ⅰ)建立適當(dāng)直角坐標(biāo)系,設(shè)拋物線方程為,由拋物線過點,可得,可求出拋物線方程為,當(dāng)時,,由求出水面寬為(米);
(Ⅱ)利用定積分求出曲面的面積,再利用柱體的體積公式求出體積;
(Ⅲ)易知為使挖掉的土最少,等腰梯形的兩腰必須同拋物線相切,設(shè)切點是拋物線弧上的一點,過作拋物線的切線得到如上圖所示的直角梯形,則切線的方程為:,于是,記梯形的面積為,則,利用基本不等式求出當(dāng)且僅當(dāng),時,等號成立,所以改挖后的溝底寬為米時,所挖的土最少.
試題解析:(Ⅰ)如圖建立直角坐標(biāo)系,
設(shè)拋物線方程為.
則由拋物線過點,可得.
于是拋物線方程為.
當(dāng)時,,由此知水面寬為(米).
(Ⅱ)(立方米)
(Ⅲ)為使挖掉的土最少,等腰梯形的兩腰必須同拋物線相切.
設(shè)切點是拋物線弧上的一點,過作拋物線的切線得到如上圖所示的直角梯形,則切線的方程為:,于是.
記梯形的面積為,則,
當(dāng)且僅當(dāng),時,等號成立,所以改挖后的溝底寬為米時,所挖的土最少.
考點:1.拋物線的標(biāo)準方程;2.定積分的應(yīng)用;3.基本不等式在求函數(shù)的最值中的應(yīng)用.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com